

Lecture Notes in Computer Science 3956
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Gilles Barthe Benjamin Grégoire
Marieke Huisman Jean-Louis Lanet (Eds.)

Construction and Analysis of
Safe, Secure, and Interoperable
Smart Devices

Second International Workshop, CASSIS 2005
Nice, France, March 8-11, 2005
Revised Selected Papers

13

Volume Editors

Gilles Barthe
Benjamin Grégoire
Marieke Huisman
INRIA Sophia Antipolis
Projet EVEREST
2004 route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex, France
E-mail: {Gilles.Barthe,Benjamin.Gregoire,Marieke.Huisman}@sophia.inria.fr

Jean-Louis Lanet
Gemplus La Vigie
Avenue du Jujubier, Z.I. Athelia IV, 13705 La Ciotat Cedex, France
E-mail: jean-louis.lanet@gemplus.com

Library of Congress Control Number: 2006924174

CR Subject Classification (1998): D.2, C.3, D.1, D.3, D.4, F.3, E.3

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-33689-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33689-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11741060 06/3142 5 4 3 2 1 0

Preface

This volume contains a selection of refereed papers from participants of the
second “Construction and Analysis of Safe, Secure and Interoperable Smart De-
vices” (Cassis) workshop, held March 8-11, 2005 in Nice, France:

http://www-sop.inria.fr/everest/events/cassis05

The workshop was organized by INRIA (Institut National de Recherche en
Informatique et en Automatique), France. It was attended by over 70 partic-
ipants, who were invited for their contributions to relevant areas of computer
science.

The aim of the CASSIS workshop is to bring together experts from the smart
devices industry and academic researchers, in order to stimulate research on
formal methods and security, and to encourage the smart device industry to
adopt innovative solutions drawn from academic research. In order to address the
different issues raised by the evolution of smart devices, the workshop consisted
of seven thematic sessions:

Session 1: Research trends in smart devices
The session was organized by Jean-Jacques Vandewalle from Gemplus. It
provided perspectives on possible evolutions of smart devices. The keynote
speaker was Gilles Privat from France Telecom R&D.

Session 2: Web services
The session was organized by Cédric Fournet and Andy Gordon from Mi-
crosoft Research Cambridge. It focused on security issues for web services,
including trust and identity management, and formal and automatic veri-
fication of web services deployments. The session was followed by a panel
discussion on security of web services, chaired by Andy Gordon. The keynote
speaker was Cédric Fournet.

Session 3: Virtual machine technology
This session was organized by Benjamin Grégoire. It covered new develop-
ments in Java technology for developing generic, adaptable and maintainable
platforms for smart devices. The keynote speaker was Sophia Drossopoulou
from Imperial College London.

Session 4: Security
This session was organized by Gilles Barthe and Marieke Huisman. It studied
security issues from a wider perspective and addressed issues such as elec-
tronic voting, Internet threat analysis, privacy and language-based security.
The keynote speaker was Dan Wallach from Rice University, Texas.

Session 5: Validation and formal methods
This session was organized by Thomas Jensen from IRISA Rennes. It focused
on verification techniques for Java-like applications, including run-time veri-
fication, program analyses, and interactive verification. The keynote speaker

VI Preface

was Klaus Havelund from Kestrel Technology at NASA Ames Research
Center.

Session 6: Proof-Carrying Code
The session was organized by Adriana Compagnoni. It presented Proof-
Carrying Code architectures and their application to advanced security poli-
cies concerning resource control and information flow. The keynote speaker
was George Necula from the University of California at Berkeley.

Session 7: Embedded devices
The final session was organized by Traian Muntean, from Marseilles Univer-
sity, and Jean-Louis Lanet, now at Gemplus. The session focused on technol-
ogy issues that arise from the evolution of embedded devices into networked
mobile devices. The keynote speaker was Rajesh Gupta from the University
of California at Irvine.

The organizers would like to thank the session organizers, speakers and par-
ticipants for helping to make CASSIS 2005 a stimulating and enjoyable event.
The organizers would also like to acknowledge financial support from ERCIM,
Gemplus International S.A, and Oberthur Card Systems. A special thanks goes
to the support teams at INRIA Sophia Antipolis, and in particular to Nathalie
Bellesso and Monique Simonetti for their help in organizational matters.

December 2005 Gilles Barthe
Benjamin Grégoire
Marieke Huisman
Jean-Louis Lanet

Organization

Organizing Committee

Gilles Barthe INRIA Sophia-Antipolis, France
Benjamin Grégoire INRIA Sophia-Antipolis, France
Marieke Huisman INRIA Sophia-Antipolis, France
Jean-Louis Lanet INRIA DirDRI Sophia-Antipolis, France

Referees

Frederic Besson
Christophe Bidan
Lilian Burdy
Pierre Cregut
Guillaume Dufay
Sandro Etalle
Andy Gordon
Valerie Issarny
Romain Janvier

Thomas Jensen
Florian Kammueller
Gerwin Klein
Peter Gorm Larsen
Bruno Legeard
Francesco Logozzo
Fabio Martinelli
Mariela Pavlova
Olivier Potoniee

German Puebla
Tamara Rezk
Bernard Serpette
Robert De Simone
Mario Sudholt
Pierre Vanel
Jerome Vouillon

Table of Contents

The Architecture of a Privacy-Aware Access Control Decision
Component

Claudio A. Ardagna, Marco Cremonini, Ernesto Damiani,
Sabrina De Capitani di Vimercati, Pierangela Samarati 1

Mobile Resource Guarantees and Policies
David Aspinall, Kenneth MacKenzie . 16

Information Flow Analysis for a Typed Assembly Language with
Polymorphic Stacks

Eduardo Bonelli, Adriana Compagnoni, Ricardo Medel 37

Romization: Early Deployment and Customization of Java Systems for
Constrained Devices

Alexandre Courbot, Gilles Grimaud, Jean-Jacques Vandewalle 57

Typed Compilation Against Non-manifest Base Classes
Christopher League, Stefan Monnier . 77

The Design of Application-Tailorable Operating System Product Lines
Daniel Lohmann, Wolfgang Schröder-Preikschat, Olaf Spinczyk 99

Bringing Ease and Adaptability to MPSoC Software Design: A
Component-Based Approach

Ali Erdem Özcan, Sébastien Jean, Jean-Bernard Stefani 118

Modular Proof Principles for Parameterised Concretizations
David Pichardie . 138

Formalisation and Verification of the GlobalPlatform Card Specification
Using the B Method

Santiago Zanella Béguelin . 155

Author Index . 175

The Architecture of a Privacy-Aware Access
Control Decision Component

Claudio A. Ardagna, Marco Cremonini, Ernesto Damiani,
Sabrina De Capitani di Vimercati, and Pierangela Samarati

Dipartimento di Tecnologie dell’Informazione,
Università degli Studi di Milano,

Crema 26013, Italy
{ardagna, cremonini, damiani, decapita, samarati}@dti.unimi.it

Abstract. Today many interactions are carried out online through Web
sites and e-services and often private and/or sensitive information is re-
quired by service providers. A growing concern related to this widespread
diffusion of on-line applications that collect personal information is that
users’ privacy is often poorly managed and sometimes abused. For in-
stance, it is well known how personal information is often disclosed to
third parties without the consent of legitimate data owners or that there
are professional services specialized on gathering and correlating data
from heterogeneous repositories, which permit to build user profiles and
possibly to disclose sensitive information not voluntarily released by their
owners. For these reasons, it has gained great importance to design sys-
tems able to fully preserve information privacy by managing in a trust-
worthy and responsible way all identity and profile information.

In this paper, we investigate some problems concerning identity man-
agement for e-services and present the architecture of the Access Control
Decision Function, a software component in charge of managing access
request in a privacy-aware fashion. The content of this paper is a result
of our ongoing activity in the framework of the PRIME project (Pri-
vacy and Identity Management for Europe) [18], funded by the Euro-
pean Commission, whose objective is the development of privacy-aware
solutions for enforcing security.

1 Introduction

From the growing offering of e-services provided by a number of organizations,
users have not only gained benefits in terms of variety and richness of accessible
services. The drawback of such an increase in service provision is that a cor-
responding growing amount of personal information is communicated by users
of e-services to the corresponding providers. Personal identifiable information
(PII) are required by e-service providers for many legitimate reasons (e.g., to
offer personalized services). Also, requiring personal information permits to mit-
igate abuses of e-services and to avoid, for example, the access by means of
automatic software instead of physical users. Finally, personal information of

G. Barthe et al. (Eds.): CASSIS 2005, LNCS 3956, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 C.A. Ardagna et al.

e-service users is needed for marketing purposes, such as promoting new services
or producing access statistics for advertisers.

However, despite all these reasons for collecting personal information are
certainly legitimate, many concerns exist about the privacy of e-service users.
Such concerns are motivated by observing that the number and type of personal
information collected by service providers permit to easily profile user’s habits
and preferences in a very detailed and precise way. In addition, it is well known
how personal information is often disclosed to third parties without the consent
of legitimate data owners or that there are professional services specialized on
gathering and correlating data from heterogeneous repositories, which permit to
build user profiles and possibly to disclose sensitive information not voluntarily
released by their owners.

As a consequence, users concerned about their private information are in-
creasingly refusing to benefit from such a widespread offering of e-services be-
cause they prefer not to have their personal data under the control of anyone at
anytime.

A key aspect to address these concerns is the notion of privacy-aware access
control , which encompasses and combine the notions of privacy and of access
control in an homogeneous framework. Traditional access control systems are
based on regulations (policies) that establish who can, or cannot, execute certain
actions on some resources and the way they compute access decisions is based on
the requester’s credentials carrying her identity and other personal information
(e.g., affiliation, membership, and so on) [10].

Other requirements that traditional access control systems usually do not
take into account are related to data usage, which is the possibility to specify
how data accessed by an authorized party must be handled. This represents a
novel feature for access control that is no simply concerned with authorizing
the access to data and resources but also with defining and enforcing the way
data and resources are subsequently managed. Also, in modern systems, the
definition of an access control model is complicated by the need to formally
represent complex policies, where access decisions depend on the application of
different rules coming from laws practices, organizational regulations, and so on.

Privacy awareness and features to manage requesters credentials accordingly
are not taken into account by access control systems in use today. Requiring
privacy awareness means that credentials and personal information of users that
request e-services cannot be freely available and manageable by service providers.
Privacy poses constraints on which data can be required for a certain service
and on the way personal information once collected by a service provider can be
handled, released to third parties, or recorded.

Despite recent advancements in access control models have permitted to use
generic attributes/properties of both requesters and resources, access control
systems are not yet designed for enforcing privacy policies.

Therefore, by considering privacy issues, there is the need to improve au-
thorization policies and models and to develop new solutions for access control,
authorization specification, and enforcement. The development of such solutions

The Architecture of a Privacy-Aware Access Control Decision Component 3

will require to investigate open research problems as well as to implement an
access control architecture addressing privacy concerns from its foundations.

In this paper, we describe an approach aimed at providing users with a
privacy-aware access control system that enforces privacy requirements. In par-
ticular, we present the architecture of the Access Control Decision Function
(ACDF), an autonomous software component for controlling access to data in
the framework of e-services. The ACDF component is based on a flexible model
and XML-based language [2]. Our work has been carried out in the context of the
Privacy and Identity Management for Europe (PRIME) project, an European
project whose goal is the development of privacy-aware solutions for enforcing
security.

The remainder of this paper is organized as follows. Section 2 summarizes
the main contributions in the field of privacy-aware access control and describes
the way our approach differs from the previous ones. Section 3 describes the new
requirements for a privacy-aware access control and gives an overview of the
PRIME project. Section 4 summarizes our proposal for a privacy-aware access
control policy. Section 5 presents the architecture of the Access Control Decision
Function, explaining its interactions with external components and the overall
work flow. Finally, Section 6 draws our conclusions and sketches future work.

2 Related Work

A number of projects and research papers about privacy have been presented
in the last few years, although not many of them have addressed the issue of
privacy-aware access control. More in detail, two lines of research are closely
related to the topic of this paper: i) the definition and development of access
control and privacy languages, and ii) the definition of infrastructures to protect
and preserve privacy of either services or clients.

For what concerns the first research topic, some languages have been defined
starting from languages for access control as XACML (eXtensible Access Control
Markup Language) [22] to data handling languages (i.e., languages regulating
how personal information could be managed once collected) as for instance P3P
(Platform for Privacy Preferences Project) [5, 8] and EPAL (Enterprise Privacy
Authorization Language) [4, 5].

XACML [22] is an XML-based language used to define access control poli-
cies. The main differences between XACML and the language developed for our
ACDF component are that XACML does not consider data handling constraints,
it does not explicitly support neither privacy features nor variables in the defini-
tion of policies (a feature that permits to greatly enhance policy expressiveness),
and it is not integrated with the ontological approach that our ACDF solution
exploits in the more general context of the PRIME Project. In addition to the
language, XACML defines both an architecture for the evaluation of policies and
a communication protocol for messages interchange. The most important differ-
ence between the XACML’s system design and architecture and our proposal is
that XACML assumes to have all the information about a requester available at

4 C.A. Ardagna et al.

the time of policy evaluation and access control decision. In our ACDF compo-
nent, instead, a negotiation phase between a requester and a provider is carried
out in order to establish the number and type of credentials that, on the one
hand, are sufficient for the service provision and, on the other hand, minimize
the disclosure of personal information.

P3P [5, 8] is a project widely acknowledged that addresses the need of a
user to assess that the privacy practices adopted by a server provider comply
with her privacy requirements. Supporting data handling policies in Web-based
transactions is the goal of P3P, which permits the definition of server privacy
practices in a standard format, allowing users to automatically understand and
match these practices against their privacy preferences. Thus, users need not
read the privacy policies at every site they interact with but they are always
aware of the server practices in data handling. Some drawbacks of P3P are the
lacking of a formal and unambiguous language to define user privacy preferences,
of a technical mechanism to verify that Web sites respect users policies and of
a process to negotiate the privacy practices between the interacting parties. In
addition, P3P scope is restricted to Web sites only.

EPAL [4, 5] is an XML-based markup language that formalizes enterprise-
internal privacy policies. It approaches the problem on the server side and ad-
dresses the need of a company to specify access control policies, with reference to
attributes/properties of the requestor, to protect private information of its users.
EPAL is designed to enable organizations to translate their privacy policies into
IT control statements and to enforce policies that may be declared and commu-
nicated in P3P. XACML, however, includes most (if not all) of the expressive
power of EPAL.

Considering projects that aim at developing an architecture to preserve secu-
rity and privacy, several have been proposed. International Security, Trust, and
Privacy Alliance (ISTPA) [13] is an open, policy-configurable model consisting
of several privacy services and capabilities, intended to be used as a template for
designing solutions and covering security, trust, and privacy requirements. The
goal of the framework is to set the basis for developing products and services
that support current and evolving privacy regulations and business policies.

Reasoning on the Web with Rules and Semantics (REWERSE) [6, 19] is an
european network of excellence on the semantic web whose objective is to enrich
the Web with so-called intelligent capabilities for data and service retrieval,
composition, and processing. REWERSE’s research activities will be devoted
to several objectives such as policy specification, composition, and conformance
aiming at user-friendly high-level specifications for complex Web systems.

Enterprise Privacy Architecture (EPA) [17] is an IBM project that wants to
improve enterprises e-business trust. EPA represents a new approach to privacy
that tries to help organizations to understand how privacy impacts business
processes. EPA defines privacy parties, rules, and data for new and existing
business processes and provides privacy management controls based on consumer
preferences, privacy best practices, and business requirements.

The Architecture of a Privacy-Aware Access Control Decision Component 5

Finally, TRUSTe [21] is an organization dedicated to preserving customer
privacy and assisting e-commerce with customer privacy concerns. It certifies
and monitors Web site privacy practices.

3 Requirements for a Privacy-Aware Access Control

In general, an environment well-suited for users needing a private and secure way
for using e-services should support at least the following basic requirements.

– Privacy. A digital identity solution should be respectful of the users rights to
privacy and should not disclose personal information without explicit consent.

– Minimal disclosure. Service providers must require the least set of credentials
needed for service provision, and users should be able to provide credentials
selectively, according to the type of on-line services they wish to access.

– Anonymity support. As a special but notable case of minimal disclosure,
many services do not need to know the real identity of a user. Pseudonyms,
multiple digital identities, and even anonymous accesses must be adopted
when possible.

– Legislation support. Privacy-related legislation is becoming a powerful driver
toward the adoption of digital identities. The exchange of identity data should
not then violate government legislation such as the Health Insurance Porta-
bility and Accountability Act (HIPPA) or Gramm-Leach-Bliley Act (GLB).

With respect to these privacy-based requirements, the usual way of design-
ing access control systems is not satisfactory. In particular, selective disclosure
of credentials is normally not implemented, because users’ attributes, for exam-
ple inserted into X.509 identity certificates [14] or collected as attribute certifi-
cates [11], are defined according to functional needs, making it easier to collect all
credentials in a row instead of iteratively asking for the ones strictly necessary
for a given service only. With XACML the same requirement holds and cre-
dentials are collected entirely before policy evaluation. Pseudonymity, multiple
identities, and anonymity are also usually not supported.

These new requirements regarding an improved management of digital identi-
ties are among the motivations of the PRIME project [18], a large-scale research
effort aimed at developing an identity management system able to protect users
personal information and to provide a framework that can be smoothly inte-
grated with current architectures and on-line services.

More specifically, providing the users with the control of their personal data
and permitting anonymous interactions are some of the main goals of the PRIME
project. Next, users should also be able to use different pseudonyms during
interactions with other parties, a feature that reduces the risk of profiling by
making different transactions performed by the same user unlinkable one with the
others. Another goal of the PRIME project is to define privacy rules governing
the system usage. The rules should establish how to use the system and, in
particular, allow the definition of policies to define trust relationships, privacy
preferences, and authorization rules.

6 C.A. Ardagna et al.

Following the definition of an enhanced authorization model based on pri-
vacy awareness, policies must be effectively enforced at the receiving end. The
enforcement of privacy policies is a more complicate task than the enforcing of
traditional access control policies because they have several additional features
such as obligations, policy composition and negotiation. The privacy-enhancing
technical components developed within the PRIME project will be integrated to
produce a privacy-enhancing digital identity management system [1, 3, 15].

4 A Privacy-Aware Access Control Model and Language

To define a privacy-enhanced access control system based on the concept of
digital identity, we first need to identify the main characteristics that the corre-
sponding access control model should possess.

– Policy formats. Parties need to specify protection requirements on the data
they make available using a format both human and machine readable, easy
to inspect and interchange.

– Access control rules. Access control rules should be able to make use of
partial identities associated with users. Also, it is important to be able to
specify access control rules about subjects accessing the information and
about resources to be accessed in terms of rich ontology-based metadata
(e.g., Semantic Web-style ones) increasingly available in advanced e-service
applications [9].

– User-driven constraints. In addition to traditional server-side access control
rules, users should be able to specify constraints and restrictions about the
usage that will be done of their information once released to a third party.

– Interactive enforcement . A novelty of our framework is that we do not as-
sume anymore that all credentials are collected before an access request is
evaluated. Instead, the access control component may not have all the infor-
mation it needs to decide whether or not an access should be granted. On
the other side, the requester may not know in advance which information
will be asked to get the access to the service. As a consequence, a new way of
enforcing the access control process has been defined based on a negotiation
protocol aimed at establishing the least set of information that the requester
has to disclose in order to access the desired service.

To take all these issues into account, a new privacy-aware access control
model together with an access control protocol for the communication of policies
and of identity information among parties have been defined and the following
different types of privacy policies have been introduced:

– traditional access control policies governing access/release of data/services
managed by the party [20];

– release policies governing the release of properties, credentials, and personal
identifiable information of the party [7];

– data handling policies defining how personal information released by a third
party have to be managed [8];

The Architecture of a Privacy-Aware Access Control Decision Component 7

– sanitized policies filtering the response to be returned to the counterpart to
avoid release of sensitive information related to the policy itself.

In the following, we focus on access control and release policies.

4.1 Privacy-Aware Access Control Rules

Although it is not in the scope of this paper to discuss the details of the access
control language, a brief introduction of its basic elements is necessary to describe
the different sub-systems that must be coordinated together with the ACDF. In
short, the main elements of PRIME’s authorization rules are as follows.

– Subject expression: a boolean formula of terms that allows the reference to a
set of subjects depending on whether they satisfy or not certain conditions,
where conditions can evaluate the user’s profile, location predicates, or the
user’s membership in groups, roles, and so on.

– Object expression: a boolean formula of terms that allows the reference to a
set of objects depending on whether they satisfy or not certain conditions,
where conditions evaluate membership of the object in categories, values of
properties on metadata, and so on.

– Actions : the action (or class of actions) to which the rule refers.
– Purposes : a statement, certified or not, representing how the data is going

to be used by the recipient.
– Conditions : a boolean formula of terms that express additional conditions,

for example, dictated by legislation, location-based conditions, and trust
conditions.

– Obligations: conditions defined by the users and attached to corresponding
data when they are disclosed to third parties. Receiving parties must comply
with obligations coming along with data and the framework is able to enforce
it.

Each access request results in an access decision that can take three different
forms:

– Yes : the access request is granted;
– No: the access request is denied;
– Undefined : the access request provides insufficient information to determine

whether the request can be granted or denied. The negotiation phase between
the requester and the service provider is entered.

5 ACDF Architecture

The PRIME’s Access Control component is composed by two parts: the Access
Control Decision Function (ACDF) responsible for taking an access decision for
all access requests directed to PRIME resources, like data and services, and the
Access Control Enforcement Function (ACEF) responsible for the enforcing of
access control decisions by intercepting accesses to resources and granting them

8 C.A. Ardagna et al.

only if they are part of an operation for which a positive decision has been taken.
From an architectural point of view, the ACDF is a unique module composed by
different sub-modules associated with specific tasks of the decisional process or in
charge of interacting with external components. More precisely, the submodules
are the following.

– Decision Maker : produces the final response possibly combining different
access decisions coming from different sub-components;

– Policy Evaluator : manages the evaluation of the applicable policies against
an access request;

– Policy Handler : is in charge of managing all communications with the Policy
Manager (an external component) to retrieve all policies applicable to an
access request;

– Reasoner Administrator : manages communication with the Reasoner com-
ponent to require reasoning operations about policies to calculate extended
policies;

– Context Administrator : manages the access and the communication with the
Context Manager component, which is the requestors information repository
during a transaction;

– PII Database Mediator : manages the communication with the information
(PII) repository that represents the storage system for personal information;

Fig. 1. The Access Control Decision Function and its interactions with other compo-
nents

The Architecture of a Privacy-Aware Access Control Decision Component 9

– SPCC Handler : manages all interactions with the System Policy Compliance
Check (SPCC) component, the one in charge of evaluating special conditions
based on assurance and trust predicates;

– LBS Evaluator : is the sub-module that evaluates special conditions based
on location-based predicates;

– Obligation Handler : selects and attaches to the access decision all corre-
sponding obligations.

5.1 ACDF Interactions

As illustrated in Figure 1, the ACDF component interacts with many other com-
ponents of PRIME’s Identity Management System (IDMS). Below we present a
brief description of these components.

Context Manager (CM). The Context Manager component manages user’s ses-
sion data (see Figure 2). Session thereby denotes a single communication action,
usually one connection established by an access requester. The context manage-
ment acts as a database for the ACDF that can query it for retrieving credentials
(User PII).

The data structure of a single context contains information on the following
two aspects:

– data disclosed to and by the communication party such as pseudonym and
personal information, either certified or not;

– certified proofs about negotiation, disclosure, and exchange of personal in-
formation.

Policy Manager (PM). The Policy Manager component handles the life cycle
management of policies by providing functionalities for policy administration
(see Figure 3). Related to the access decision, the ACDF interacts with the

Fig. 2. Interactions with the Context Manager

10 C.A. Ardagna et al.

Fig. 3. Interactions with the Policy Manager

Fig. 4. Interactions with the PII Database Mediator

Policy Manager to collect all policies that can be applied to the access request
being evaluated. The Policy Manager has a searching functionality that filters
out policies based on access request attributes.

PII Database Mediator (PII DB). The PII Database Mediator component man-
ages all accesses to the database containing personal information (PII) (see Fig-
ure 4). The access to PII information stored into the PII Database is handled by
the Mediator component so that no special privilege is granted to internal mod-
ules of PRIME. The ACDF interacts with the PII Database Mediator by invoking
a specific method and passing all parameters needed for querying PII data.

Reasoner. The Reasoner is the component that maintains and makes use of the
ontologies defined in the project (see Figure 5). It provides deductions based

The Architecture of a Privacy-Aware Access Control Decision Component 11

Fig. 5. Interactions with the Reasoner

on machine readable data and rules. In addition to data and prolog style rules
and generic methods for producing all inferences from an ontology, the mod-
ule also provides methods specific to some PRIME components. For the ACDF
component, in particular, this includes credentials equivalences, which is a fea-
ture to verify equivalences between credential expressed according to different
ontologies. The reasoner is based on the Jena API and as such requires data and
ontologies to be expressed using Jena RDF models [16].

System Policy Compliance Check (SPCC). The SPCC module handles trust,
assurance and accountability compliance conditions which requires the analy-

Fig. 6. Interactions with the SPCC

12 C.A. Ardagna et al.

sis of the assurance information (see Figure 6). Although in certain cases trust
and assurance constraints, specified by some policies, can be computed statically
and independently of access control, in other cases (notably when dynamic con-
straints are involved) trust conditions need to be evaluated together with other
conditions by the ACDF. In these cases, the ACDF recognizes the assurance
constraint during the evaluation process and invokes the SPCC component to
evaluate it.

5.2 Decision Maker

Having introduced all the components involved in the access control process, the
core module of ACDF, the Decision Maker, can be fully described. The Decision
Maker is the module responsible for all access control decisions and returns a
Yes, No, or Undefined response. It handles applicable access control policies and
proceeds evaluating all different components of the rules, like subject expres-
sions, object expressions, and so on. Such an evaluation requires the Decision
Maker to interact and coordinate with both sub-modules internal to the ACDF
and external components. The ACDF execution flow prescribes that, first, the
ACDF receives an access request and selects the context associated with the cur-
rent session through a Context Manager API. After that, information related to
the requested object is collected from the PII Database Mediator and all the ap-
plicable policies are retrieved from the Policy Management module by means of
access request attributes. When applicable policies are acquired, the evaluation
process can start and proceeds as follows:

1. predicates based on trust/assurance properties are communicated to the Sys-
tem Policy Compliance Check (SPCC) that is in charge of evaluating them;

2. predicates about the subject are evaluated based on context information;
3. similarly, predicates about the object of the request are evaluated by inter-

acting with the PII Database Mediator;
4. location-based predicates represent a special case and their evaluation is

delegated to a specialized sub-module of ACDF, called Location Evaluator ;
5. with all partial evaluations generated by sub-modules and external systems,

the Decision Manager produces a final access control decision by composing
all partial decisions:
(a) if the decision is positive (response Yes) obligations and constraints need

to be returned. Obligation defines how released data must be handled
after disclosure, constraints provide directives to the PII Database Me-
diator when the access is enforced;

(b) if the decision is negative (response No) a reason for that can be returned
attached to the answer;

(c) if a decision cannot be reached (response Undefined) obligations and
additional requests are returned to the subject, possibly sanitized for
preventing disclosure of access control policies details.

Finally, the ACDF produces a message for the Decision Wrapper, which acts
as a mediator between the ACDF and the ACEF module, to communicate to
the ACEF component how to handle the corresponding access request.

The Architecture of a Privacy-Aware Access Control Decision Component 13

<policy>
<subject>any</subject>
<action>http://.../action#rent_a_car</action>
<object>http://.../object#sport_car</object>
<purpose>http://.../purpose#any_purpose</purpose>
<subjectExpr>
<condition>
<Lval>Idemix-EU-DriversLicence.Issuer.Country</Lval>
<op>=</op>
<rVal>IT</rVal>

</condition>
<condition>
<Lval>
Idemix-EU-DriversLicence.Permit.CarPermit.Allowed
</Lval>
<op>=</op>
<rVal>true</rVal>

</condition>
<condition>
<Lval>User.Age</Lval>
<op>></op>
<rVal>21</rVal>

</condition>
</subjectExpr>
<objectExpr/>
<trust>http://.../assurance#HasWorkingTMP</trust>
<lbs>in_area("Italy")</lbs>
<genCond>
<condition>
<Lval>Idemix-Ecoin.Value</Lval>
<op>=</op>
<rVal>80</rVal>

</condition>
</genCond>
<ns>http://.../prime-PII-lite</ns>
<obligation ref="OBL1">
</policy>

Fig. 7. A simple example of policy

As an example, consider a rent-a-car scenario and suppose that a policy states
that “an anonymous user with a valid Italian driver license can rent a sport car
with a special price of 80 euro per day, if she is in Italy, she is more than 21
years old, and if the rent-a-car service provider has a working trusted platform
management”.

Figure 7 illustrates a representation of this policy using our privacy-aware
access control language.

At server-side, suppose now that an access request stating that “Mary want
to rent a sport car” arrives together with her credentials. The ACDF can query

14 C.A. Ardagna et al.

the context from the Context Manager to verify the age, the location, and the
availability of an ecoin card of Mary. Assume that, among the required creden-
tials, the driver license is missing.

The Decision Maker decomposes the policy and sends the location-based
predicate (lbs element) to the LBS Evaluator, the assurance predicate (trust
element) to the SPCC Handler, and evaluates the remaining conditions. After
the evaluation, the LBS evaluator returns a positive response (Mary is in Italy),
the SPCC handler returns a positive response (the server has a working TPM),
and the Policy Evaluator calculates an undefined response due to the fact that
Mary has not previously released her driver license. The Decision Maker collects
all these responses and returns a final undefined decision together with a request
for the driver license. At this point, Mary based on her privacy preferences can
decide whether to disclose her driver license or to terminate the transaction.

6 Conclusions and Future Work

To protect the privacy of parties in today’s global infrastructure we need to
combine solutions from technology, legislation, and organizational practices. This
paper showed a first proposal towards the solution of this problem developed in
the context of our ongoing activity in the framework of the PRIME project.
In particular, with respect to previous privacy-aware access control frameworks,
this solution fully takes into account the possibility for the user to negotiate
the credentials to be released and actually permits to enforce the principle of
minimal disclosure. The solution, moreover, is not strictly targeted to Web-based
transactions and to data handling policies, as for P3P. Future work include the
development of negotiation policies to be applied to the parties; the extension of
the notion of subject ontology to capture more complex assertions on subjects,
as well as the notion of object and credential ontology; the support of variables
into the language to achieve a higher degree of expressiveness.

Acknowledgments

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591 and by the
Italian MIUR within the KIWI and MAPS projects.

References

1. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati. A Web
Service Architecture for Enforcing Access Control Policies. In Proc. of the First
International Workshop on Views On Designing Complex Architectures (VODCA
2004), Bertinoro, Italy, September 11-12, 2004.

2. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati and P. Samarati. Towards
Privacy-Enhanced Authorization Policies and Languages. In Proc. of the 19th An-
nual IFIP WG 11.3 Working Conference on Data and Applications Security (IFIP),
Nathan Hale Inn, University of Connecticut, Storrs, USA, August 7-10, 2005.

The Architecture of a Privacy-Aware Access Control Decision Component 15

3. C.A. Ardagna and S. De Capitani di Vimercati. A comparison of modeling strate-
gies in defining XML-based access control languages. Computer Systems Science
& Engineering Journal, 2004.

4. P. Ashley, S. Hada, C. Powers and M. Schunter. Enterprise Privacy Authorization
Language(EPAL). IBM Research, 2003.

5. P. Ashley, S. Hada, G. Karjoth and M. Schunter. E-P3P privacy policies and
privacy authorization. In Proc. of the ACM workshop on Privacy in the Electronic
Society (WPES 2002), Washington, DC, USA, November 21, 2002.

6. P. A. Bonatti and D. Olmedilla. Driving and monitoring provisional trust nego-
tiation with metapolicies. In Proc. of the IEEE 6th International Workshop on
Policies for Distributed Systems and Networks (POLICY 2005), Stockholm, Swe-
den, 6-8 June 2005.

7. P. Bonatti and P. Samarati. A unified framework for regulating access and infor-
mation release on the web. Journal of Computer Security, 10(3):241–272, 2002.

8. L. Cranor and M. Langheinrich and M. Marchiori and M. Presler-Marshall and J.
Reagle. The Platform for Privacy Preferences 1.0 (P3P1.0) Specification.
http://www.w3.org/TR/P3P/.

9. E. Damiani, A. Corallo, G. Elia. A Knowledge Management System Enabling
Regional Innovation. In Proc. of the VI international conference on Knowledge-
Based Intelligent Information & Engineering Systems (KES 2002), Crema, Italy,
September 16-18 2002.

10. S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Access control:
Principles and solutions. Software – Practice and Experience, 33(5):397–421, April
2003.

11. S. Farrell and R. Housley. An Internet Attribute Certificate for Authorization.
Request For Comments 3281, Internet Engineering Task Force, 2002.

12. C. A. Gunter, M. J. May and S. G. Stubblebine. A Formal Privacy System and its
Application to Location Based Services. In Proc. of the 4th Workshop on Privacy
Enhancing Technologies (PET 2004), Toronto, Canada, May 26-28, 2004.

13. International Security, Trust, and Privacy Alliance (ISTPA),
http://www.istpa.org/

14. ITU Telecommunication Standardization Sector (ITU-T). Information Technol-
ogy - Open Systems Interconnection - The Directory: Authentication Framework.
Recommendation X.509 (03/00), International Telecommunication Union, 2000.

15. S. Jajodia, P. Samarati, M. Sapino, and V. Subrahmanian. Flexible support for
multiple access control policies. ACM Transactions on Database Systems, 26(2):18–
28, June 2001.

16. Jena. http://jena.sourceforge.net .
17. G. Karjoth, M. Schunter and M. Waidner. Privacy-enabled Services for Enterprises

In Proc. of the 13th International Conference on Database and Expert Systems
Applications (DEXA’02), Aix-en-Provence, France, September 2-6, 2002.

18. PRIME (Privacy and Identity Management for Europe).
http://www.prime-project.eu.org .

19. Reasoning on the Web (REWERSE),
http://www.pms.ifi.lmu.de/rewerse-wga1/index.html

20. P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models,
and mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design, LNCS 2171. Springer-Verlag, 2001.

21. Truste, http://www.truste.org/about/index.php
22. XACML - (eXtensible Access Control Markup Language), http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml#XACML20

Mobile Resource Guarantees and Policies

David Aspinall and Kenneth MacKenzie

LFCS, School of Informatics, The University of Edinburgh, UK

Abstract. This paper introduces notions of resource policy for mobile
code to be run on smart devices, to integrate with the proof-carrying
code architecture of the Mobile Resource Guarantees (MRG) project.
Two forms of policy are used: guaranteed policies which come with proofs
and target policies which describe limits of the device. A guaranteed pol-
icy is expressed as a function of a methods input sizes, which determines
a bound on consumption of some resource. A target policy is defined by a
constant bound and input constraints for a method. A recipient of mobile
code chooses whether to run methods by comparing between a guaran-
teed policy and the target policy. Since delivered code may use methods
implemented on the target machine, guaranteed policies may also be
provided by the platform; they appear symbolically as assumptions in
delivered proofs. Guaranteed policies entail proof obligations that must
be established from the proof certificate. Before proof, a policy checker
ensures that the guaranteed policy refines the target policy; our policy
format ensures that this step is tractable and does not require proof.
Delivering policies thus mediates between arbitrary target requirements
and the desirability to package code and certificate only once.

1 Introduction

The Mobile Resource Guarantees project has built a proof-carrying code (PCC)
infrastructure for ensuring resource bounds on mobile code (for an overview,
see [AGH+05]). The infrastructure uses a certifying compiler from a high-level
functional language called Camelot to a low-level language Grail, which is a
functional presentation of a sub-language of the Java Virtual Machine Language
(JVML). Thus, Grail programs are executed on a JVM but transmitted as stan-
dard class files, packaged together with PCC certificates. The architecture (with
our extension) is shown below:

JVML

Grail

Camelot Type system

NetworkExpansion

Certifying Compiler

Certificate+Policy

Resource Policy

Certificate+Policy

JVML

Grail

Contraction

JVM

Certificate Checker

switches

G. Barthe et al. (Eds.): CASSIS 2005, LNCS 3956, pp. 16–36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mobile Resource Guarantees and Policies 17

This is a fairly usual picture for proof-carrying code, except that we highlight the
role of a guaranteed resource policy which is delivered as part of the certificate
and a target resource policy which is the instance of the safety policy for code
to meet resource usage restrictions imposed by the target machine.

The guaranteed resource policy is a specification, ultimately generated by
the certifying compiler. It contains concrete bounds on the resource usage of
the compiled Camelot program, in a standard format; it is guaranteed because
it comes with a proof. The idea of the standard format is to allow mediation
with an arbitrary target policy. In a general setting where the code delivery
to a smart device takes place off-line (i.e. without communication back to the
code producer), the recipient cannot communicate its target policy; it is therefore
unrealistic to hope that the delivered code comes with a certificate stating exactly
the required behaviour.

The certificate checker has responsibility (1) to check that the delivered policy
would meet or exceed the target policy, and then (2) to check that the code
indeed meets its guaranteed policy. Our design is to use the proof evidence in the
certificate to establish (2), but allow the target certificate checker to use its own
mechanism to establish (1), ideally as an efficient operation not involving proof
checking or running a VCG. In more advanced scenarios, the certificate checker
might use claimed policies to select between several possible implementations of
a method supplied, for example, selecting the more favourable alternative in a
time-space trade-off according to local conditions.

The target resource policy is an input both to the certificate checker and
to the modified JVM. Usually in a PCC scenario, the safety check is entirely
static. The certificate checker immediately denies execution to code which does
not satisfy the target resource policy, switching off execution in the JVM. But
the resource policy is also shown in the diagram as an input to the modified
JVM: this is to allow, in principle, the possible run-time monitoring of resource
usage to check conformance with the policy. A checker may decide to defer some
resource bounds to dynamic checks if they cannot be ensured by the delivered
policy, or, indeed, if the delivered proof certificate lacks static evidence that a
particular claimed policy is met.

Contributions. Until now in our work on MRG and the closely related work,
resource policies have not been considered explicitly. In MRG, we have used a
fixed type system technology to express schematic constraints on Grail functions
and methods which impose a single space bound on the overall program (linear
on input size). This paper designs a significant extension, introducing:

– the extension of certificates with resource policies that can express complex
bounds on several resources for individual methods;

– a language describing resource policies and its formal semantics;
– the specification of target resource policies on the target device;
– extended certificate checking to relate target resource policies to claimed

guarantees, as well as the check that claimed guarantees are indeed satisfied.

As a simple example of a guaranteed policy, we are able to express statements
such as:

18 D. Aspinall and K. MacKenzie

“for positive integer inputs n and m, the method call calc(int m,int
n) requires at most 16+42∗m+9∗m∗n JVM instructions to be executed.”

More complex concrete bounds statements constructed with polynomials, log-
arithms, and exponentials, are allowed, providing they satisfy some reasonable
restrictions described later. As well as time costs, we consider heap space con-
sumption, maximum stack depth, and costs related to specific method calls. The
latter is useful, for example, to bound the number of calls to expensive or secu-
rity critical library methods made by client code: e.g., a program to be run on a
mobile phone may be allowed to send two text messages but no more. Formally,
we consider cost metrics, such as heap space consumption, to be supplied with
an ordering. This allows us to relate different policies in the checking process.

Guaranteed policies are checked against target policies which express limits
of constrained devices. An example is:

“for all inputs n < 10 and m < 10, executing the calc(int m,int n)
method must take no more than 2000 instructions.”

Here the client of the delivered code provides a promise about the way the code
will be invoked, and asks for a hard limit on resource consumption in turn. Fixing
the format of both forms of policy allows us to use a simple checking process.

Code that is run on a target machine is often a combination of delivered
methods and methods supplied by the platform. In this case, the resource con-
sumption of the delivered methods may depend on the precise behaviour of the
platform library functions, which is unknown at the time that the mobile code is
certified. To deal with this scenario, we allow delivered policies to refer symboli-
cally to provided functional bounds on platform functions whose implementation
is unknown. We may express statements such as:

“for a positive integer input m, the method throwdice(m) takes at
most m ∗ F (6) JVM instructions to execute, where F (x) is the number
of instructions taken by the platform function rand(int x).”

In this case, the delivered certificate will contain a proof of the guaranteed bound
under the assumption that the symbolic bound is satisfied. To (soundly) compute
an overall worst case bound the platform must supply a (guaranteed and proven)
bound which can be used during certificate checking.

Resource usage statements such as the above may not always hold unless
particular safety conditions are met; or the resource usage may depend on non-
functional (intensional) factors, such as the layout of data in memory. Consider,
for example, the different space behaviour between deep and shallow copying of
objects in memory, or a method whose complexity depends on the length of a list
represented as a linked list sequence of objects. To deal with (and in particular,
to prove) such cases, our preferred approach is to combine resource statements
with high-level typing invariants which are maintained by our compiled methods.
This has been done for heap space usage bounds in the existing fixed policy
scheme of MRG [BHMS05] based on the specialised type system of Hofmann
and Jost [HJ03] for inferring space usage. In this paper we focus instead on new

Mobile Resource Guarantees and Policies 19

forms of resource statement not previously considered in the implementation
of MRG, and how such statements can be expressed and related in our PCC
architecture. The generation and proof of resource statements is beyond the
scope of what is considered here, although in certain cases automatic generation
of bounds for resources other than heap usage is feasible by extending existing
techniques (for example, inferring stack depth by an extension of Hofmann-Jost
is considered by Campbell [Cam05]).

Outline. In the next section we introduce Grail and the semantic notions for
resource policies expressed on the Grail operational semantics, which is a sim-
plified abstraction of the JVML semantics. Resource policies are statements in
the Grail program logic, which is also introduced in Sect. 2. In Sect. 3 we in-
troduce a simple language for describing two forms of resource policies, one for
guaranteed policies delivered with code and the other for the target policy of a
smart device. We use the standard format of Java security policy files augmented
with dedicated forms of permission. In Sect. 4 we describe some mechanisms for
checking policies and how this interacts with the usual proof checking process.
Finally, Sect. 5 concludes with a summary of the status of our work on policies
and a comparison with related work.

2 Resource Policies for Grail

We want to make our resource policies precise and formalise their meaning. To
do this, we first recall the Grail syntax, semantics and program logic, before
considering the semantics of policies in Sect. 2.3.

2.1 Grail Syntax and Semantics

Grail is a functional language for writing imperative low-level code; we sketch a
simplified version here. Together with intuition based on knowledge of the JVM,
this sketch should suffice for an understanding of this paper; full details of Grail
and its compilation scheme appear elsewhere [BMS03, MW04].

The simplified abstract syntax of Grail is as follows:

v ::= null | i
a ::= v | x
e ::= a | op a a | new C | x.t | x.t:=a
| let val x= e in e | let val () = e in e | if e then e else e
| call f | C.m(a)

op ::= add | sub | mul | div | = | <= | < | <=

A Grail program consists of a sequence of class definitions for class names C.
Each class definition may contain declarations for fields t and for methods m.
Each method m in turn declares a number of mutually recursive functions f
together with an overall expression body.

Expressions e include arguments, which may be values v (the null reference
and integer literals) or variables x. Integers 1 (or any non-zero value) and 0 are

20 D. Aspinall and K. MacKenzie

class List {
field int hd
field List tl

method static List emptylist(int n) =
let
val l = null[List]

fun emptylist(int n,List l) =
if n>0 then empty_aux(n,l) else l

fun empty_aux(int n,List l) =
let val cell = new <List()>()

val () = putfield cell <int List.hd> 0
val () = putfield cell <List List.tl> l
val n = sub n 1
val l = cell

in
emptylist(n,l)

end
in

emptylist(n,l)
end

}

Fig. 1. Grail List class

also used to represent boolean values true and false as on the JVM. The
remaining expressions are formed from: binary operations, object construction,
field selection and field update, binding and sequential composition (written as
in SML, by binding to the unit value), function and method invocations. Strong
syntactic restrictions ensure that all functions are tail recursive, so a function
in Grail can be compiled directly into a branch instruction in the underlying
virtual machine: this is reflected in the abstract syntax above by using the call
expression which does not pass any arguments. Method invocation is different,
and a method may have a number of arguments a which can be variables or
literal values. To keep the presentation brief, we will only consider class (static)
methods, although the full language includes instance methods, as well as many
other features of JVML.

An example Grail program is shown in Fig. 1. This program defines a class
List to represent linked lists, and a method List.emptylist which con-
structs a list of a given length whose hd fields all contain zero. The method
is defined using two tail recursive functions emptylist and emptylist aux.
Programs in concrete Grail syntax are more verbose than the simplified abstract
syntax shown above: we use the extra keywords putfield, getfield and
invokestatic and some additional typing information is included, for exam-
ple, on the null value and the putfield instruction. We will return to extend
this example later.

Mobile Resource Guarantees and Policies 21

Semantics. The semantics of Grail is given in terms of a resource algebra R,
extending a big-step evaluation relation based on the functional interpretation:

E � h, e ⇓ h′, v, r

where E is an environment, h and h′ are heaps (partial maps from locations to
values), v is the result value (or () indicating the absence of a value) and r is
a resource value from R. The semantics is deterministic: whenever e evaluates
in some E, h then v, h′ and r are uniquely determined. Moreover, the resources
r are a purely non-invasive annotation on the ordinary operational semantics;
evaluation of an expression is not affected by the resources consumed in subex-
pressions (this is reminiscent of effects [TJ94]).

A resource algebra R has a carrier set R consisting of resource values r ∈ R,
together with:

– A cost ordering ≤ ⊆ R×R
– For the atomic expressions, families of constants Rnull ∈ R, Rint ∈ R, etc.
– For compound expressions, families of operations, e.g. Rlet ∈ R×R→ R.

The cost ordering expresses when one resource value is considered cheaper or
better than another. The resource constants and operators are used to calculate
costs by annotating the operational semantics; there is a constant or operator
for each component of the syntax. An example rule is the rule for let-bindings
(sequential composition with assignment):

E � h, e1 ⇓ h1, v1, r1 E[x := v1] � h1, e2 ⇓ h2, v, r2

E � h, let val x= e1 in e2 ⇓ h2, v, Rlet(r1, r2)

For this paper we do not require additional properties of the resource algebra,
although it is natural to impose further structure. For quantitative costs, for
example, we may define the compound resource operators such as Rlet in terms
of an associative and commutative addition operator corresponding to sequential
composition, as in the standard resource algebra described in Sect. 2.2.

The full definition of the semantics is in Table 2 at the end of the paper.

Program logic. Grail has a program logic which is formulated to take advantage
of the functional semantics. Statements in the Grail Logic are written:

G � e : P [E, h, h′, v, r]

where e is a program expression and P is a predicate over the components of the
operational semantics; G is a collection of assumptions of statements of the form
e′ : P ′. This statement has a partial correctness reading: it states that whenever
e evaluates in input environment E and heap h, then P holds for E, h, and the
resulting heap h′, value v, and resources consumed r.

Here is the rule in the logic for let-bindings:

G � e1 : P1 G � e2 : P2

G � let x e1 e2 : {∃ h1 v1, r1 r2. P1[E, h, h1, v1, r1]∧
P2[E[x := v1], h1, h

′, v, r2] ∧
r = Rlet(r1, r2)}

22 D. Aspinall and K. MacKenzie

This rule says that a let expression satisfies the assertion which is formed by
combining two assertions P1 and P2 for the subexpressions, whenever there is an
intermediate result state and result h1, v1, r1 and the overall resource r consumed
is given by the let operator applied to the component costs r1 and r2.

The full definition of the logic is shown in Table 3 at the end of the paper.
Predicates in the logic are like post-assertions in VDM: they range over both
input and output without needing auxiliary variables as would be necessary in
Hoare logic. This allows powerful but comparatively simple rules for adaptation,
derived from the second consequence rule shown in Table 3. The main power
of the logic comes with the last two rules for recursive function and procedure
calls; these allow one to establish the correctness of a function or method body
under the assumption that recursive calls are already correct.

The program logic enjoys good meta-theoretic properties; in particular, it is
sound and relative complete. Grail’s syntax, semantics, program logic and meta-
theory have been all formalised in the theorem prover Isabelle; the formalisation
serves both to provide strong confidence in the meta-theoretical results and to
provide an experimental PCC environment. The program logic does not define
a notation for predicates: these are written in the ambient higher-order logic of
the theorem prover; this allows powerful specifications which can directly use
the available library functions for arithmetic, etc. Our work here extends the
Isabelle formalisation which is presented elsewhere [ABH+05, ABH+04]. In the
overview here we elide some of the technicalities of the Isabelle encoding (for
further details see loc. cit.).

2.2 A Standard Resource Algebra

We will suppose that a standard resource algebra is fixed by the application
framework, which implies that the producer and consumer of mobile code have
some agreement over which costs are of interest and how they are calculated.

As an example resource algebra which collects four costs of interest, we con-
sider resource quadruples:

r = (clock , space, depth, methcnts)

where the first three components range over natural numbers, and the last over
multisets of method names.

The costs have the following meaning:

– clock is a JVM instruction counter, counting bytecodes executed;
– space is the cumulative size of allocated objects on the heap;
– depth is an approximation of the maximum frame stack depth;
– methcnts counts how many times each method is invoked.

The resource operators for this standard algebra are given in Table 1.
The time and space resources measured here have a standard meaning. For

clock , we count JVM instructions under the Grail to JVML translation.1 For
1 The details of this translation explain why if expressions are apparently free: the

guard in the conditional is compiled into a test-and-branch instruction which is al-
ready accounted for by Rprim ; similarly, sequential composition is just juxtaposition.

Mobile Resource Guarantees and Policies 23

Table 1. Standard resource algebra

Rnull = Rint = Rvar = (1, 0, 0, {})
Rprim(r1, r2) = r1 + r2 + (1, 0, 0, {})

Rnew
C = (3, size(C), 0, {})

Rgetf = (2, 0, 0, {})
Rputf(r) = r + (2, 0, 0, {})

Rlet(r1, r2) = r1 + r2 + (1, 0, 0, {})
Rcomp(r1, r2) = r1 + r2

Rif(r1, r2) = r1 + r2

Rcall(r) = r + (1, 0, 0, {})
Rmeth

C.m,,ai
(r) = r + (2 + |ai|, 0, 1 + |ai|, {C.m})

(t1, s1, d1,ms1) + (t2, s2, d2,ms2) = (t1 + t2, s1 + s2,max(d1, d2),ms1 ∪+ ms2)

(t1, s1, d1, ms1) ≤ (t2, s2, d2,ms2) = t1 ≤ t2 ∧ s1 ≤ s2 ∧ d1 ≤ d2 ∧ ms1 ⊆ ms2

Note: resource values rk have the form rk = (tk, sk,msk, dk) for k = 1, 2.
A tuple (t, s, d,ms) stands for (clock , space , depth ,methcnts).
The notation |ai| denotes the length of the list a1 . . . an and ∪+ is multiset union.

space we measure memory usage based on the sizes of instance fields in a Java
class (the function size(C)). For depth we approximate frame stack space based
on the number of method parameters. The stack space calculation could easily
be made more precise by incorporating the size needed for the local variables
of each method. Finally, the method invocation counter methcnts accumulates
method names invoked.

For a particular JVM implementation, these measures could be used to cal-
culate approximate real time and space bounds, for example, based on empirical
measurements of timings and knowledge of object overhead used in heap layout.

Notice that values in this resource algebra are composed of four independent
components that could each be calculated separately within separate resource
algebras. Each kind of resource has different properties, and will be expressed
separately in our policy language described in Sect. 3.

This example algebra is similar to the one considered in the main MRG pro-
totype described in [ABH+04], although there the heap size and method count
components were not included. Many other interesting resource algebras can
be given in this general scheme; see [ABH+05] for some particular examples
and [ABM05] for an application of a more constrained form of resource alge-
bra than that considered here. The important fact is that the soundness and
completeness of the Grail Logic hold for any resource algebra.

2.3 Formal Notions of Resource Policy

Given a notion of resource consumption and a way to calculate it, we can go on
to define a formal notion of resource policy. With respect to the Grail semantics,
a resource policy RP for expressions is a predicate on environments E, heaps h
and resource values r, written as:

RP [E, h, r]

24 D. Aspinall and K. MacKenzie

Intuitively, the policy determines acceptable resource limits for expressions ex-
ecuted in the given environment and heap. This is simply a restricted form of
assertion in the program logic: a policy for an expression is a specification of
its resource consumption in terms of its input taken from the environment E
and heap h. In the mechanised Isabelle implementation we again express these
predicates in Isabelle HOL, the meta-logic used to formalise the Grail syntax,
semantics and logic rules.

Note that in general the policy may rely on a type safety invariant (or more
generally, some invariant involving object containment and separation), as men-
tioned on page 18. In this case we must use specifications in the program logic
which are conditional on type safety before evaluating expressions, and ensure
type safety of the output afterwards. A resource policy would be embedded as:

PRP [E, h, h′, v, r] � TS [E, h] =⇒ TS ′[E, h, h′, v] ∧ RP [E, h, r]

where TS and TS ′ are domain-specific safety invariants supplied by the certifying
compiler. If the input environment and heap do not satisfy the safety invariant
the policy is satisfied vacuously. For Camelot and its space-aware type system,
the type safety invariant refers to the integrity of heap representations of high-
level Camelot datatypes and the free list used for space reuse; the translation of
this into derived assertions [BHMS05] in the Grail Logic may be understood as
a special case of the above where the resource policy states that no heap space
is consumed.

Definition 1. An expression e conforms to a policy RP, written e |= RP, just
in case:

∀E h r. E � h, e ⇓ h′, v, r =⇒ RP [E, h, r].

Notice that this is a partial correctness interpretation, in that conformance is
only considered for terminating expressions. Termination may be treated as an
orthogonal issue, using a related logic as proposed in [ABH+05], or we may
impose run-time monitoring to ensure that programs do not diverge and violate
their resource bounds.

Policy conformance is a special case of validity of assertions in the program
logic, which means that we have a sound and complete logic for establishing
conformance of resource policies.

Theorem 1 (cf. [ABH+05]). {}� e : RP [E, h, r] if and only if e |= RP.

Of course, we are ultimately interested in resource policies for method bodies;
the environment declares the parameters of the method.

Example. The resource policy for the standard resource algebra given by

RPcalc[E, h, (t, s, d,ms)] = t ≤ 16 + 42 ∗E(m) + 9 ∗ E(m) ∗ E(n)

formalises the example policy described in words for the calc method in Sect. 1.
We claim that it is satisfied by the implementation of the calc method shown

Mobile Resource Guarantees and Policies 25

method static void addthrow(List l, int n) =
let

fun update_pos(List l) =
let val i = getfield l <int List.hd>

val i = add i 1
val () = putfield l <int List.hd> i

in () end

fun addthrow(int n,List l) =
if n=0 then update_pos(l) else addthrow_aux(l,n)

fun addthrow_aux(List l, int n) =
let val l = getfield l <List List.tl>

val n = sub n 1
in addthrow(n,l) end

in addthrow(n,l) end

// Throw n-sided dice m times and count results in a list
method static List calc(int n, int m) =
let

val l = invokestatic <List List.emptylist (int)> (n)

fun make_throws (List l, int n, int m) =
if m=0 then l

else next_throw(l,n,m)

fun next_throw (List l, int n, int m) =
let val r = invokestatic <int Platform.Random.rand(int)> (n)

val () = invokestatic <void List.addthrow(List,int)> (l, r)
val m = sub m 1

in make_throws(l,n,m) end
in make_throws(l,n,m) end

Fig. 2. Grail program to count dice throws

in Fig. 2, which shows a Grail program to count the results of m throws of an
n-sided dice. The result of throwing a dice is represented by a call to a platform
function Platform.Random.rand(n). To establish the bound above we must
assume additionally that the platform function satisfies a policy:

RPPlatform.Random.rand [E, h, (t, s, d,ms)] = t ≤ 20

i.e., that the number of instructions executed in the random method is at
most 20.
For a given resource algebra, we can relate different policies in a refinement
ordering.

Definition 2. A resource policy RP1 refines another policy RP2, if

∀e.e |= RP1 =⇒ e |= RP2

26 D. Aspinall and K. MacKenzie

If RP1 refines RP2, then by definition any expression which conforms to the first
policy also conforms to the second (more permissive) policy.

Example. A refinement for RPcalc is the policy given by:

RP ′
calc[E, h, (t, s, d,ms)] = t ≤ 16 + 42 ∗ E(m) + 9 ∗ E(m) ∗ E(n) ∧ s ≤ 2 ∗ E(n)

which requires additionally that the calc method allocates no more than 2 ∗ n
words of heap space during its execution, which is also satisfied by the example
program in Fig. 2, which allocates a list of length n.

Apart from adding requirements for further kinds of resource, one policy re-
fines another of the form of RPcalc if it places a tighter bound on the resource
consumption. We are interested in policies which place bounds on resource con-
sumption in the manner of RPcalc above, but the form of resource policy allowed
so far is much more general. For the framework here we at least want policies to
respect the ordering of resources (downward closure):

Definition 3. A resource policy RP respects ≤ for R, if for all E and h,

∀r, r′ ∈ R. r ≤ r′ ∧RP [E, h, r′] =⇒ RP [E, h, r].

Clearly our example policies respect the resource ordering of the standard re-
source algebra. From now on we restrict to policies which respect resource
ordering on the resource algebra of interest. This ensures that alternative im-
plementations of methods with better resource behaviour may be selected to
implement any policy. It rules out, for example, policies which describe a mini-
mum resource usage.

Based on these definitions we can define a simple theory of policy refinement
and its implementation in Isabelle. But this semantic notion of policy is still too
general: we introduce further restrictions in the next section, by introducing our
two specific forms of policy liable to be useful in practice on constrained devices.

3 Expressing Resource Policies

Resource policies can be written in our formal logic in the same way as program
logic assertions, but this is an internal format and it is too rich: it is more useful
to consider a way of expressing policies that is meaningful for the user. For
this we need to investigate a policy language. Since we have an infrastructure
for the Java platform, we will extend Java’s existing notion of permissions and
security policy. Security policies in Java are specified in files created with the
policytool program or otherwise. For example, the trivial policy file:

grant {
permission java.security.AllPermission;

};

describes a policy which grants all permissions. More interestingly, the policy
file:

Mobile Resource Guarantees and Policies 27

grant codeBase "file:${user.dir}/" {
permission java.io.FilePermission "/etc/passwd", "read";

};

gives special permissions to code executed from the user’s home directory, to
read the contents of the password file.

To express resource policies for our application, we will introduce new forms
of permission for the guaranteed policy and for the target policy. Permissions
in Java are usually associated with running code: the security manager will
raise an exception if some method does not possess appropriate permissions.
However, our overloading of the concept will be useful: we can extend the built-
in mechanisms for loading policy files and comparing between them, as well as
allow a mechanism for run-time instrumentation.

The starting point is the Permission class, which defines an abstract
method implies that compares two permissions. If permission p1 implies p2,
then code which is granted permission p1 also has permission p2. If we can im-
plement this method in a way which is consistent with our formal interpretation
of resource permissions, we can integrate some parts of our policy refinement
checking into the Java security model.

Guaranteed policies. Guaranteed policies deliver a parametrised bound on re-
source consumption, expressed as a nondecreasing function of a measure on
each of the inputs. For integer inputs, the measure takes the input parameter
unchanged; for other types we define a type-dependent coercion into the integers,
in a standard way. For example:

permission ClockGuarantee "List.calc(int m, int n)"
"16 + 42*m + 9*m*n"

permission SpaceGuarantee "List.calc(int m, int n)" "2*n"

expresses the time and space bounds of the earlier example. Several permis-
sions together define a resource policy for a method; resource policies for several
methods define an overall guaranteed policy for a delivered program.

Target policies. The second form of policy is simpler and expresses some fixed
hard limits of the particular target machine. For example:

permission ClockTarget "List.calc(int m, int n)"
"500, m<=3, n<=4"

permission SpaceTarget "List.calc(int m, int n)" "100"

Here, the absolute maximum execution time allowed for the calc method is
500 steps, and the target environment is providing a promise that the input
parameters will satisfy the constraints shown. For heap space, the maximum
new space consumed when evaluating the method is 100 words, irrespective of
the input parameters to the method.

3.1 Permissions Language

Formally, Java methods are selected by a method descriptor. Method descriptors
are described by the following grammar:

28 D. Aspinall and K. MacKenzie

mdesc ::= mspec(type x, . . . , type x)
mspec ::= C#m | C.m

A method descriptor can disambiguate overloaded methods. A static method
has its usual Java name (e.g., java.lang.Integer.parseInt), whereas an
instance method has a name of the form java.lang.Integer#toString.

Guaranteed policies delivered with the code are described by the following
grammar (for clarity we elide the quotation marks required for Java policy files):

G ::= permission gdesc bound
gdesc ::= ClockGuarantee mdesc

| SpaceGuarantee mdesc
| DepthGuarantee mdesc
| MethcntGuarantee mdesc,mdesc

bound ::= f
f ::= K | x | f + f | f * f | fˆf
| log(f) | min(f, f) | max(f, f)
| gdesc(v, . . . , v)

v ::= K | x

while target policies are given by the grammar:

T ::= permission tdesc limit , constraints
tdesc ::= ClockTarget mdesc

| SpaceTarget mdesc
| DepthTarget mdesc
| MethcntTarget mdesc,mdesc

limit ::= K
constraints ::= x <= K, . . . , x <= K

where K denotes a non-negative integer constant and x denotes a variable oc-
curring in the method descriptor or (in the case of instance methods only) the
keyword this.

The permissions defined above mirror the four classes of cost defined in
Sect. 2.2 and describe guaranteed and target bounds for these costs. The Clock,
Space and Depth permissions take a single method descriptor, specifying the
method to which the bounds apply. In contrast the Methcnt permissions take
two method descriptors m1 and m2 say; the meaning is that when m1 is invoked,
it will cause no more than the specified number of invocations of m2 to occur.

In the final expression former for f , we allow the bounds in guaranteed poli-
cies to refer to other guaranteed policies. For example, we may have a policy
such as:

permission ClockGuarantee C.m(int n)
4*n + 3*(ClockGuarantee D.rand(int k) (n))

which states that the execution time of the method C.m depends on that of
D.rand.

Mobile Resource Guarantees and Policies 29

Note that we do not allow arbitrary bounding functions in guaranteed poli-
cies, but only ones of the form f above. It is not hard to see that functions
which are generated by the grammar above are all nondecreasing. This will be
important in our policy-checking procedure.

3.2 Semantics of Resource Policies

So far, resource policies are purely symbolic; we now give their semantic inter-
pretation. Recall that a guaranteed policy for a resource R consists of a method
signature (for the method m say) followed by a bound f . The intention is that
f describes a function which is an upper bound on the amount of R which is
consumed by any invocation of m, the bound being given as a function of the
inputs to m. To this end, we require that the variables appearing in f are a
subset of the variables appearing in the signature of m (with the addition of
this if m is an instance method). Since not all of the arguments of m may
influence its resource consumption we do not insist that all arguments appear in
f . For example, if we have a method pow(int p,int q) which calculates pq

by repeated multiplication then it is probable that the execution time of pow
would only depend on q.

In order to interpret the bounding expressions appearing in policies, we as-
sume that every Java type t has an associated measure ‖ · ‖ : t → N. For x of
type int or long, ‖x‖ = |x|, the absolute value of x. For floating-point types,
we put ‖x‖ = �|x|�. For heap-allocated objects o, we define ‖o‖ to be the size of
the object allocated in memory (size(C) when o is of class C).2

We will sometimes wish to deal with unbounded quantities: to facilitate this we
consider values lying in the set N̂ = N ∪ {∞}. Arithmetic operators are extended
from N to N̂ in the obvious way: for example, x+∞ =∞ and min(x,∞) = x for all
x ∈ N̂. Given a bounding expression f and an environment E mapping identifiers
to values (in N̂), we define an interpretation �f�E ∈ N̂ as follows:

�K�E = K
�x�E = ‖E(x)‖

�f1 + f2�E = �f1�E + �f2�E

�f1 ∗ f2�E = �f1�E�f2�E

�f1ˆf2�E = �f1�
�f2�E

E

�logf�E =
{

0 if �f�E = 0
max{k : 2k ≤ �f�E} otherwise

�min(f1, f2)�E = min(�f1�E , �f2�E)
�max(f1, f2)�E = max(�f1�E , �f2�E)
�g(v1, . . . , vn)� = �Tg�[xi �→�vi�E]

where, in the last line, the xi are the variables appearing in the first method de-
scriptor inside g, and Tg stands for the bounding expression for the permission g.
2 This size function is not flexible enough for richer forms of resource specification

such as those expressed by the Camelot type system; for such cases we would want
to allow additional user-defined size functions as part of a proof certificate.

30 D. Aspinall and K. MacKenzie

To interpret expressions involving other permissions, we first collect together all
guaranteed policies from the delivered code and platform. We must disallow cir-
cular references between guarantee policies, as this could lead to infinite recursion
while evaluating bounding expressions.

Note that if f is a bounding expression in the variables {x1, . . . , xn} then
there is an induced function f̄ : N̂

n → N̂ defined by

f̄(u1, . . . , un) = �f�{x1 �→u1,...,xn �→un}.

Every such f̄ is a nondecreasing function on N̂
n.

Given this semantic interpretation for new forms of permission, it is straight-
forward to convert Java policies to their formal equivalents in the Isabelle pro-
gram logic, so that policy conformance and refinement can be checked formally.
However, we have designed the format of policies so that refinement can be
checked simply, without needing arbitrary proof. This means that we must trust
an implementation of the checking procedure, described next.

4 Checking Policies

Suppose that we have been supplied with a guaranteed policy G for a static
method m stating that a resource R is bounded by the function f .

Let the variables occurring in the expression f be x1, . . . , xn, which are a
subset of the set of formal arguments appearing in the signature for m.

Now suppose that we have a target policy T for the method m and the
resource R. Recall that T consists of a signature for m (without loss of generality
we assume that the formal arguments appearing in the signatures for m in G
and T are identical) followed by a constant b and a sequence of constraints for
the formal arguments of m. The interpretation of T is that the code consumer
requires that no more than b units of R are consumed, provided that the inputs
to m do not exceed the given bounds.

By eliminating redundant constraints and adding vacuous constraints xj ≤
∞ for variables not explicitly constrained in T we form a set of constraints
{x1 ≤ b1, . . . xn ≤ bn} (with bi ∈ N̂) where each xi appears precisely once.

Recall that f induces a function f̄ : N̂
n → N̂. The code producer has supplied

a proof that the resource usage of m when applied to a given set of arguments
is bounded above by the value of f̄ applied to the appropriate subset of the
arguments of m. Since f̄ is nondecreasing it follows that the maximum resource
usage of m subject to {xi ≤ bi} is

sup {f̄(u1, . . . , un) : ui ∈ N̂, ui ≤ bi} = f̄(b1, . . . , bn) = �f�E

where E is the environment {x1 �→ b1, . . . , xn �→ bn} (the resource usage is un-
bounded if �f�E = ∞). Thus to check the validity of T we need merely check
whether �f�E ≤ b.

For instance methods we follow the same procedure, but one must also con-
sider the variable this.

Mobile Resource Guarantees and Policies 31

4.1 Remarks

The policy-checking strategy described above depends crucially on the fact that
the bounding functions given in guaranteed policies are nondecreasing. Note that
the grammar for bounding functions makes this property manifest; a simple syn-
tactic check suffices to show that a purported bound is nondecreasing, and so no
extra overhead of proof-checking is required to establish this. This is a particu-
lar advantage in the scenario mentioned in the introduction, where we may ship
several possible implementations of library functions with different resource be-
haviour which are used by the target device; it would be possible try to optimise
resource usage by rearranging its choice of methods within given target policies.
More importantly, this step can be done more quickly than VCG and proof check-
ing, avoiding the need to check proofs when a policy cannot be met.

We have considered policy-checking with more general policy formats. For
example, the code producer might supply code with some certified bounding
function f and the consumer may require to know that some other bounding
function g is satisfied for some set of inputs (the case we consider above is when
g is constant). In this case, the consumer has to check that g − f is positive for
some set of inputs, and since g − f could essentially be any function, this is a
difficult problem. Furthermore, it is not possible for the code producer to provide
any help (in the form of proof, for instance) since it has no a priori knowledge
of the bounds that the consumer will require to be satisfied. Policy-checking in
this general situation thus appears to be infeasible.

5 Conclusions

We have described a way of generalising the present proof-carrying code in-
frastructure of the MRG project to include resource policies based on assertions
on bytecode expressed in the Grail program logic. Policies are naturally treated
as special cases of assertions in the logic, but we want to express them in a sim-
pler and more uniform way, in particular, to allow an efficient check of whether
mobile code supplied with a guaranteed policy implements the target policy of
particular device. To this end, we introduced syntax and semantics for two forms
of policy embedded as Java permissions in Java security policy files. Using the
Java file format and permissions mechanism allows us to implement a sound test
for policy refinement inside Java. Then checking policy conformance is reduced
to checking that the code satisfies the guaranteed policy claimed for it (delivered
with the certificate) and that the guaranteed policy implies the policy desired
by the client.

The security model here is quite analogous to the present security mecha-
nisms in Java, where code is implicitly supplied with its “code base” (origin)
which may be checked against permitted code bases, and where code may be
supplied with cryptographic signatures and these signatures may be accepted
according to the policy.

More work is required to implement our policies inside the full MRG architec-
ture and try full-sized examples. So far we have constructed necessary extensions

32 D. Aspinall and K. MacKenzie

to the Grail Logic, conducted experimental verifications and implemented a pro-
totype parser and a checker for resource policies. It remains to integrate with
the Java platform (perhaps following the technique described in [GP05]), and to
embed guaranteed policies in certificates — ultimately with automation extend-
ing that provided for the current fixed policy derived from the Camelot type
system.

Related Work. Other researchers have worked on inferring and proving static
bounds on different kinds of resources both for high-level languages and low-level
ones, using type-based and logical techniques e.g., [CW00, VH04,HP99, BPS05].
Recent work [CEI05] has explored combinations of static and dynamic methods,
which would also be useful in our setting. In this paper we concentrated on the
mechanism of describing policies rather than the mechanism of inferring, proving
or dynamically checking them; our approach would still be applicable if we used
other techniques for those steps. Moreover, the basic ideas for the PCC archi-
tecture based on delivering policies with code are not specific to resource usage
policies. Although important for general adoption, there seems to be relatively
little published work on how policies are described and delivered in other PCC
settings. One of the original PCC architectures described by Necula [Nec98] pro-
posed the negotiation of policy between code producer and code consumer, in
principle allowing the certificate to be specially adapted to the target require-
ments. In later work this was simplified to a fixed type-safety policy which would
also work for a store-and-forward network.

Away from PCC, there is other related work on specification of resource
behaviour for compiled Java programs. Most developments focus on dynamic
checking. The Java Resource Management API (RM API)[CHS+03] (a devel-
opment of the JRes interface [CvE98]) is a flexible mechanism which allows
Java-based platforms to manage and monitor resource consumption. Resource
policies are implemented via resource domains, which supply units of a given
resource to applications (more precisely, to Java isolates) and also allow client
applications to query availability of resources. To expose a resource through the
RM API, the implementation of the resource includes code which records con-
sumption and destruction, requiring modification of system classes. CPU time is
monitored by a separate thread which periodically polls the operating system.
Another resource accounting system for Java is J-SEAL2 [BHV01, J-S], which
performs its resource accounting via bytecode instrumentation to insert calls to
record resource allocations; CPU time again requires special handling, but in
this case an estimate is calculated from the number of bytecode instructions
executed. In both Java RM API and J-SEAL2, resource monitoring is dynamic;
this can result in more accurate tracking and allocation of resources than static
prediction as in our approach, but it requires runtime overhead and the need for
recovery mechanisms in the case of resource exhaustion.

We have introduced a very simple policy language here. There are connec-
tions to work on policy languages in other domains of computer security, such
as the use of Datalog, or the generation of large databases from policies, as in
SELinux [LS01]. It would be interesting to consider whether one may usefully

Mobile Resource Guarantees and Policies 33

express our policies in languages such as these. However, the fundamental prob-
lem here is different: rather than querying some policy database to see if some
access should be granted, the central question we have considered is refinement
between policies, given that we already have guaranteed conformance for some
program and a particular given policy.

Future work. There are several directions for further work. Most importantly,
we need more automated mechanisms to provide the resource bound guarantees
which are delivered with mobile code, and ways to analyse and predict the resource
behaviour of existing platform library functions. We also need to undertake prac-
tical experiments on a particular platform to calibrate our cost model, and ensure
that our resource guarantees can indeed be fulfilled on a particular architecture.
Knowledge of an architecture and in particular additional hooks (such as provided
by the Real-Time Java Specification [B+00]) could help provide sharper guar-
antees, including modelling of garbage collection, for example. Concerning the
certificate checking mechanism, it would be interesting to investigate the combina-
tion of static and dynamic techniques, as outlined in the introduction. We plan to
pursue some of these activities in the recently started EPSRC Project ReQueST,
which is investigating resource bound certification for Grid computing.

Acknowledgements. We’re grateful to our colleagues working on the MRG project
for discussions on the topic of this paper, in particular to Lennart Beringer,
Martin Hofmann, Alberto Momigliano, and Ian Stark for collaboration on re-
source algebras and to Lennart, Martin, Alberto, and Hans-Wolfgang Loidl for
their collaboration on the Grail Logic. Our work was supported by the Euro-
pean Community as part of the MRG and Mobius projects (IST-2001-33149 and
FP6-015905), as well as by the EPSRC ReQueST project (EP/C537068/1). This
paper reflects only the authors’ views and neither the Community nor EPSRC
is liable for any use that may be made of the information contained within it.

References

ABH+04. David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl,
and Alberto Momigliano. A program logic for resource verification. In Proc.
of 17th Int. Conf. on Theorem Proving in Higher Order Logics (TPHOLs
2004), Lecture Notes in Computer Science, Heidelberg, September 2004.
Springer.

ABH+05. David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl,
and Alberto Momigliano. A program logic for resources. Technical Report
EDI-INF-RR-0296, Informatics, University of Edinburgh, July 2005.

ABM05. David Aspinall, Lennart Beringer, and Alberto Momigliano. Optimisation
validation. Technical report, Informatics, University of Edinburgh, Decem-
ber 2005.

AGH+05. David Aspinall, Stephen Gilmore, Martin Hofmann, Donald Sannella, and
Ian Stark. Mobile resource guarantees for smart devices. In Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices: Proceedings
of the International Workshop CASSIS 2004, number 3362 in Lecture Notes
in Computer Science, pages 1–26. Springer-Verlag, 2005.

34 D. Aspinall and K. MacKenzie

B+00. Greg Bollella et al. The Real-time Specification for Java. Addison-Wesley,
2000.

BHMS05. Lennart Beringer, Martin Hofmann, Alberto Momigliano, and Olha Shkar-
avska. Automatic certification of heap consumption. In Andrei Voronkov
Franz Baader, editor, Proc. Logic for Programming, Artificial Intelligence,
and Reasoning: 11th International Conference, LPAR 2004, volume 3425 of
Lecture Notes in Computer Science, pages 347–362. Springer, Feb 2005.

BHV01. Walter Binder, Jane G. Hulaas, and Alex Villazón. Portable resource control
in Java. In OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN conference
on Object oriented programming, systems, languages, and applications, pages
139–155, New York, NY, USA, 2001. ACM Press.

BMS03. Lennart Beringer, Kenneth MacKenzie, and Ian Stark. Grail: a functional
form for imperative mobile code. Electronic Notes in Theoretical Computer
Science, 85(1), June 2003.

BPS05. G. Barthe, M. Pavlova, and G. Schneider. Precise analysis of memory con-
sumption using program logics. In B. Aichernig and B. Beckert, editors,
Proceedings of SEFM’05. IEEE Press, 2005.

Cam05. Brian Campbell. Folding stack memory usage prediction into heap. In
Proceedings of Quantitative Aspects of Programming Languages Workshop,
ETAPS 2005, April 2005.

CEI05. Ajay Chander, David Espinosa, and Nayeem Islam. Enforcing resource
bounds via static verification of dynamic checks. In Proc. ESOP 2005, Lec-
ture Notes in Computer Science, Heidelberg, 2005. Springer-Verlag LNCS.

CHS+03. Grzegorz Czajkowski, Stephen Hahn, Glenn Skinner, Pete Soper, and Cia-
ran Bryce. Sun Microsystems Technical Report TR-2003-124: A resource
management interface for the Java platform, May 2003.

CvE98. Grzegorz Czajkowski and Thorsten von Eicken. JRes: a resource accounting
interface for Java. In OOPSLA ’98: Proceedings of the 13th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and
applications, pages 21–35, New York, NY, USA, 1998. ACM Press.

CW00. K. Crary and S. Weirich. Resource bound certification. In Proc. 27th Symp.
Principles of Prog. Lang. (POPL), pages 184–198. ACM, 2000.

GP05. Stephen Gilmore and Matthew Prowse. Proof-carrying bytecode. In Pro-
ceedings of First Workshop on Bytecode Semantics, Verification, Analysis
and Transformation (BYTECODE ’05), Edinburgh, Scotland, April 2005.

HJ03. M. Hofmann and S. Jost. Static prediction of heap space usage for first-
order functional programs. In Proceedings of the 30th ACM Symposium
on Principles of Programming Languages, volume 38 of ACM SIGPLAN
Notices, pages 185–197, New York, January 2003. ACM Press.

HP99. J. Hughes and L. Pareto. Recursion and dynamic data structures in bounded
space: towards embedded ML programming. In Proc. International Confer-
ence on Functional Programming (ACM). Paris, September ’99, 1999.

J-S. J-SEAL2 website. See www.jseal2.com.
LS01. Peter Loscocco and Stephen Smalley. Integrating flexible support for secu-

rity policies into the linux operating system. In Clem Cole, editor, USENIX
Annual Technical Conference, FREENIX Track. USENIX, 2001.

MW04. Kenneth MacKenzie and Nicholas Wolverson. Camelot and grail: resource-
aware functional programming on the JVM. In Trends in Functional Pro-
graming, volume 4, pages 29–46. Intellect, 2004.

Nec98. George C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon
University, October 1998. Available as Technical Report CMU-CS-98-154.

Mobile Resource Guarantees and Policies 35

TJ94. Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Inf.
Comput., 111(2):245–296, 1994.

VH04. Pedro Vasconcelos and Kevin Hammond. Inferring costs for recursive, poly-
morphic and higher-order functional programs. In IFL 2003: Proceedings
of the 15th International Workshop on the Implementation of Functional
Languages, Lecture Notes in Computer Science. Springer-Verlag, 2004.

Appendix

Table 2. Grail operational semantics

E � h, a ⇓ h, evalE(a), cost(a)

r1 = cost(a1) r2 = cost(a2)
E � h, op a1 a2 ⇓ h, op(evalE(a1), evalE(a2)), Rprim(r1, r2)

l = freshloc(h)
E � h, new c ⇓ h[l �→ (c, {ti := initval i})], l, Rnew

E〈x〉 = l l ∈ dom(h)

E � h, x.t ⇓ h, h(l).t, Rgetf

E〈x〉 = l l ∈ dom(h)
E � h, x.t:=a ⇓ h[l.t �→ evalE(a)], (), Rputf(cost(a))

E � h, e1 ⇓ h1, v1, r1 E � h1, e2 ⇓ h′, v, r2

E � h, let val () = e1 in e2 ⇓ h′, v, Rcomp(r1, r2)

E � h, e1 ⇓ h1, v1, r1 E〈x := v1〉 � h1, e2 ⇓ h′, v, r2

E � h, let val x = e1 in e2 ⇓ h′, v, Rlet(r1, r2)

E � h, e1 ⇓ h1, v1, r1 v1
= false E � h1, e2 ⇓ h′, v, r2

E � h, if e1 then e2 else e3 ⇓ h′, v, Rif(r1, r2)

E � h, e1 ⇓ h1, false, r1 E � h1, e3 ⇓ h′, v, r2

E � h, if e1 then e2 else e3 ⇓ h′, v, Rif(r1, r2)

E � h, fbody ⇓ h′, v, r

E � h, call f ⇓ h′, v, Rcall(r)

{xi := evalE(ai)} � h, C.mbody ⇓ h′, v, r

E � h, C.m(a) ⇓ h′, v, Rmeth(r)

Notes:

– argument evaluation is defined by evalE(x) = E(x) and evalE(v) = v;
– argument costs are defined as cost(null) = Rnull, cost(i) = Rint, cost(x) = Rvar;
– the function freshloc(h) returns a fresh location l not in the domain of h;
– initval i stands for the initial value of the field ti in class c;
– fbody and C.mbody denote the definition of function f and method C.m respectively.

36 D. Aspinall and K. MacKenzie

Table 3. Grail Logic

e : P ∈ G

G � e : P

G � e : P P =⇒ Q

G � e : Q

G � a : {h′ = h ∧ v = evalE(x) ∧ r = cost(a)}

G � op a1 a2 : {h′ = h ∧ v = op(evalE(a1), evalE(a2)) ∧
r = Rprim(cost(a1), cost(a2))}

G � new C : {v = freshloc(h) ∧ h′ = h[v �→ (C, {ti := initval i})] ∧ r = Rnew}

G � e1 : P1 G � e2 : P2

G � let val x = e1 in e2 : {∃ h1 v1, r1 r2. P1[E, h, h1, v1, r1]∧
P2[E[x := v1], h1, h

′, v, r2] ∧
r = Rlet(r1, r2)}

G � e1 : P1 G � e2 : P2

G � let val () = e1 in e2 : {∃ h1 r1 r2. P1[E, h, h1, (), r1]∧
P2[E, h1, h

′, v, r2] ∧
r = Rcomp(r1, r2)}

G � e1 : P1 G � e2 : P2 G � e3 : P3

G � if e1 then e2 else e3 : {∃ h1 v1 r1 r2. P1[E, h, h1, v1, r1]∧
(v1
= false =⇒ P2[E, h1, h

′, v, r2]) ∧
(v1 = false =⇒ P3[E, h1, h

′, v, r2]) ∧ r = Rif(r1, r2)}
G, call f : P � fbody : {P [E, h, h′, v, Rcall(r)]}

G � call f : P

G, c.m(y) : P � mbody : {P [E, h, h′, v, Rmeth(r)]}
G � c.m(y) : P

Note: assertions in braces {. . .} have standard free variables E, h, h′, v, r.
The notation P [E1, h1, h

′
1, v1, r1] indicates the instantiation of a predicate.

Information Flow Analysis for a Typed
Assembly Language with Polymorphic Stacks

Eduardo Bonelli1, Adriana Compagnoni2, and Ricardo Medel2

1 LIFIA, Fac. de Informática, Univ. Nac. de La Plata, Argentina
2 Stevens Institute of Technology, Hoboken NJ 07030, USA

eduardo@sol.info.unlp.edu.ar, {rmedel, abc}@cs.stevens.edu

Abstract. We study secure information flow in a stack based Typed As-
sembly Language (TAL). We define a TAL with an execution stack and
establish the soundness of its type system by proving non-interference.
One of the problems of studying information flow for a low-level language
is the absence of high-level control flow constructs that guide information
flow analysis in high-level languages. Furthermore, in the presence of an
execution stack, code that frees space on the stack must be constrained
in order to avoid illegal flows. Finally, in the presence of stack poly-
morphism, we must ensure that type variables are instantiated without
observable differences. These issues are addressed by introducing junc-
tion points into the type system, ensuring that they behave as ordered
linear continuations, and that they interact safely with the execution
stack. We also discuss several limitations of our approach and point out
some remaining open issues.

1 Introduction and Motivation

The increasing need to guarantee the confidentiality of electronically stored in-
formation has prompted the academic community to study confidentiality from
different points of view. Although access control regulates who can access infor-
mation, it does not regulate the proper manipulation of sensitive data, i.e. the
flow of information. In contrast, the theory of programming languages provides
powerful techniques that have proven successful in studying information flow
security.

In a multilevel security architecture, information can range from having low
(public) to high (secret) security level. Information flow analysis studies whether
an attacker can obtain information about the secret data by observing the public
output of the system. The non-interference property states that any two exe-
cutions of the same program, where only the high-security inputs differ in both
executions, do not exhibit any observable difference in their outputs.

The example in Fig. 1(a) shows a program that has the non-interference
property only if the variable y is secret. Otherwise, information about the secret
(labelled �) value stored in x is revealed by the different values that y can
have, depending on the branch of the if-then-else instruction executed. This
breach of security is called implicit information flow. In order to statically detect

G. Barthe et al. (Eds.): CASSIS 2005, LNCS 3956, pp. 37–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 E. Bonelli, A. Compagnoni, and R. Medel

pc level x : int�; z : int⊥

low if x = 0
high then y := 1
high else y := 2;
low z := 3

(a) High-level language

L1 : bnz r1,L2
mov r2, 1
jmp L3

L2 : mov r2, 2
L3 : mov r3, 3

(b) Assembly language

L1 : pushJP L3
bnz r1,L2
mov r2, 1
jmpJP L3

L2 : mov r2, 2
jmpJP L3

L3 : mov r3, 3

(c) SIFTAL

Fig. 1. Example of implicit information flow

this kind of information flow, a security level is associated with the program
counter at each program point. This association is shown in the left column
of the example, and it can be verified that at each program point no variable
with a lower security level than the program counter is updated. Notice that the
assignment in the last line of code does not depend on the value of x. Therefore,
the level of the program counter becomes low again and the public (labelled ⊥)
variable z can be updated without compromising confidentiality.

Motivated by the desire to obtain secure information flow results for low-level
code without trusting the compiler, and the fact that most mobile programs
are distributed in some low-level format, we study confidentiality for assembly
programs using a language-based approach to security via type theory.

Information flow analysis in low-level languages presents a number of difficul-
ties typically not present in high-level ones. As already noted in several articles on
information flow for low-level languages [3, 14], the absence of high-level control
flow constructs dictates the need for some alternative mechanism for retrieving
high-level program structure. For example, the program in Fig. 1(b) is a stan-
dard translation of the high-level program of Fig. 1(a) to assembly language.
Notice that the security level of the program counter can be raised after the
execution of the bnz instruction, but there is no way of knowing where it can be
lowered again, in order to allow the update of the public variable z represented
by register r3.

In [15] we introduced the notion of junction point, which represents a pro-
gram point where execution of different branches of computation converge. Our
Typed Assembly Language SIFTAL uses junction points and typing directives to
manipulate a stack of junction points and reflect the control flow structure of
the programs. These junction points are instrumental during typechecking to
prove non-interference; however, they bear no meaning during execution, and
are therefore removed after typechecking.

The code in Fig. 1(c) is a translation to SIFTAL of the high-level program
in Fig. 1(a). The SIFTAL program uses the code label L3 as a junction point,
in order to signal where the security level can be lowered. During typechecking,
the typing directive pushJP L3 pushes the label L3 onto a stack, introducing a
linear obligation that has to be met by using a jmpJP L3 instruction. Moreover,
the program is well-typed only if there are no modifications of public registers
inside the branches of the bnz instruction. Note that pushJP has no effect at
run-time and it is discarded after typechecking, while jmpJP will be replaced by
a jmp instruction.

Information Flow Analysis for a TAL with Polymorphic Stacks 39

Lstart Code〈{r1 : int⊥, r2 : int�} | ⊥〉
salloc 2
mov r1,0
sst sp[0],r1
mov r1,1
sst sp[1],r1
bnz r2,Lhigh
jmp LJP

Lhigh Code〈{r1 : int⊥} | 	〉
sfree 1
jmp LJP

LJP Code〈{r1 : int⊥} | ⊥〉
sld r1,sp[0]
. . .

Lstart Code〈{r1 : int⊥, r2 : int�} | ⊥〉
salloc 3
mov r1,0
sst sp[2],r1
mov r1,1
sst sp[1],r1
sst sp[0],r2
bnz r2, Lhigh
jmp LJP

Lhigh Code〈{r1 : int⊥} | 	〉
sfree 1
jmp LJP

LJP Code〈{r1 : int⊥} | ⊥〉
sfree 1
sld r1,sp[0]
. . .

(a) (b)

Fig. 2. Insecure information flow in the presence of stacks

SIFTAL is a RISC load-store assembly language, and it includes instructions
to allocate (salloc) and deallocate (sfree) space on the stack, and instructions
to load (sld) and store (sst) words from and onto the stack. In order to verify
the non-interference of a program that manipulates the stack, we must ensure
the absence of explicit illegal flows via the stack: elements that are pushed onto
the stack while the pc has a security level l must be popped while the pc has
at least security level l.

However, other more subtle forms of information leaks may arise. Consider
the code in Fig. 2. The expression Code〈Γ | pc〉 that appears alongside a
code label is the type of the code block, where Γ is the type of the registers
before execution starts, and pc indicates the initial security level of the program
counter. For simplicity, in these programs we do not include the type of the stack
pointer.

Fig. 2(a) shows that it is possible to leak confidential information by allowing
to pop a public stack component during the execution of a high-security branch.
The first five lines of the program push a 0 and a 1 onto the stack using the
auxiliary register r1. Then, in line 6 a branching operation based on the secret
value stored in r2 is performed. One branch (line 7) is empty, and only jumps to
the junction point LJP . The second branch pointed to by Lhigh eliminates one
element from the stack with sfree. Thus, the top of the stack is erased, leaving
1 as the new top, and the branch ends with a jump to LJP . At the junction
point LJP , the security level of the pc is low again, allowing the public register
r1 to learn information about the secret value in the register r2 by reading the
top of the stack. Now, if r1 contains 1 the attacker knows that r2 is not 0, if r1
contains 0 the attacker knows that r2 contains 0.

The previous problem stems from the fact that a high-security branch has
freed the public stack component on the top of the stack. However, as the next
example shows, it is not sufficient to restrict the free operation to components
whose security level is at least that of the program counter at that point. The
code in Fig. 2(b) pushes two public values on the stack and then a secret one.

40 E. Bonelli, A. Compagnoni, and R. Medel

It then branches on the secret value of r2. One branch does nothing and the
other frees the top of the stack. It is legal to do it because at the top of the stack
there is a secret value and the program counter is high-security at that point.
Once the junction point LJP has been reached, the topmost item of the stack
is freed. Again, this is legal because the security level of the program counter is
low. Therefore, any public or secret value can be erased from the stack. However,
depending on the public value of the top of the resulting stack, information may
be inferred about the secret value of r2. The conclusion is that the type system
must guarantee that high branches free the same amount of items from the stack.

Stack types in SIFTAL are polymorphic. That is, type variables can be in-
cluded in a stack type to abstract part of the type. This is required to implement
multiple calls to code sections, as in procedure calls. The new format of the type
for a piece of code will be Code〈∀[Θ]Γ | pc〉, with Θ being the list of variables
(usually denoted by the capital letters X , Y , etc.), Γ being the type of the reg-
isters, including a stack pointer register named sp, and pc being the expected
security level of the program counter in such code.

In order to jump to a piece of code that has a polymorphic stack type, the
type variables must be instantiated. For example, code of type Code〈∀[X]{sp :
int⊥ ·X} | pc〉 requires a stack with type int⊥ ·X to be executed safely. If that
code is at label L then the jump instruction jmp L[int	 · ε] instantiates, for this
particular call, the type of the stack to int⊥ · int	 · ε.

Lstart Code〈∀[X]{r1 : int⊥, r2 : int�, sp : X} | ⊥〉
salloc 2
mov r1,0
sst sp[0],r1
mov r1,1
sst sp[1],r1
pushJP LJP
bnz r2,Lhigh[X]
jmpJP LJP[int⊥ · X] % requires LJP on top

Lhigh Code〈∀[Y]{r1 : int⊥, sp : int⊥ · LJP · int⊥ · Y } | 	〉
sfree 1
jmpJP LJP[Y] % requires LJP in the middle

LJP Code〈∀[Z]{r1 : int⊥, sp : int⊥ · Z} | ⊥〉
sld r1,sp[0]
. . .

Fig. 3. Implicit information flow detected in SIFTAL

By translating the code in Fig. 2(a) to SIFTAL, we obtain the program in
Fig. 3. This code fails to typecheck since the occurrence of jmpJP in Lstart
requires that LJP be at the top of the stack, but the one in Lhigh requires that
it be in the middle, since Lhigh frees the topmost component.

This paper presents an extension of our previous work on information flow
for assembly languages [7, 15] to address the issues that arise by the inclusion of
an execution stack. The examples in this section illustrate that stack constructs
are not orthogonal to junction point constructs. Indeed, the main technical con-
tribution of this work is the explicit treatment of junction points as a tool to
address the problems that arise in the presence of polymorphic stacks.

Information Flow Analysis for a TAL with Polymorphic Stacks 41

Additional benefits of dealing explicitly with junction points in the type
system are: 1) well-typed programs must “consume” all of their junction points,
which, in the vision of junction points as ordered linear continuations [28], is
equivalent to requiring that all linear obligations are met; and 2) whenever a
jump to a code block is performed, the type system ensures that the current
pending junction points are passed on as obligations to the destination code
block. Complete definitions and detailed proofs of the results in this paper appear
in the preliminary version of the technical report [6].

2 An Overview of SIFTAL

2.1 Syntax of Terms and Type Expressions

SIFTAL is a Typed Assembly Language (TAL) [17] based on STAL [16]. It has an
execution stack and constructs that support stack allocation. The syntax of the
types for SIFTAL is given in Fig. 4, and the syntax of SIFTAL programs is given
in Fig. 5. We assume the following pairwise disjoint sets: an infinite enumerable
set of code labels L1, L2, . . ., an infinite enumerable set of memory tuple labels
p1, p2, . . ., an infinite enumerable set of stack variables X1, X2, . . . and a finite
set of registers {r0, . . . , rn, sp}.

security labels l, pc ∈ Lsec
security types σ ::= τ l

types τ ::= int | Code〈∀[Θ]Γ | pc〉 | 〈σ0, . . . , σn〉
register bank types Γ ::= {r1 : σ1, . . . , rn : σn, sp : Σ}
stack types Σ ::= X | ε | σ̂ · Σ | L · Σ
stack component types σ̂ ::= σ | ns
type assignment Θ ::= · | X, Θ
heap types Ψ ::= {	1 : σ1, . . . , 	n : σn}
machine configuration types Ω ::= [Ψ, Γ,pc]

Fig. 4. Types in SIFTAL

Since type expressions in SIFTAL may include annotations for security levels,
we assume given a lattice Lsec of security labels. The least and greatest elements
of this lattice are ⊥ and �, respectively. We use � for the lattice ordering and �
for the lattice join operation. Security types are types annotated with a security
label (τ l). The type of integer constants is int , while Code〈∀[Θ]Γ | pc〉 is the
type of code blocks. The type of tuple labels is denoted by 〈σ0, . . . , σn〉 or 〈σ〉.
The type of a code block Code〈∀[Θ]Γ | pc〉 consists of the register context Γ , a
register bank type that maps registers to types; the security label of the program
counter (pc); and a type assignment (Θ) of stack type variables that binds all free
stack variables in Γ . Execution stack types (Σ) are sequences of stack component
types: security types, nonsense types, and code labels. The nonsense type is used
when allocating space on the stack. Letters α, αi are used for stack component
types. We use FV (Σ) for the free variables in Σ (and similarly for the free
variables in security types, code blocks, etc.). A heap type (Ψ) is a mapping from

42 E. Bonelli, A. Compagnoni, and R. Medel

machine configuration Π ::= (H,R, B)
heap H ::= {	1 : h1, . . . , 	n : hn}
heap labels 	 ::= p | L
heap values h ::= 〈w, . . . , w〉 | Code〈∀[Θ]Γ | pc〉l.B
register bank R ::= {r1 : w1, . . . , rn : wn, sp : S}
code blocks B ::= halt | jmp v | jmpJPL[Σ] | ι; B
instructions ι ::= aop rd, rs, v | bnz r, v | mov r, v | ld rd, rs[i]

st rd[i], rs | pushJP L | salloc i | sfree i
sld rd, sp[i] | sst sp[i], rs

arithmetic operations aop ::= add | sub | mul
operands v ::= r | w | v[Σ]
word values w ::= i | p | L | w[Σ]
stack component values ŵ ::= w | ns
stack S ::= ε | ŵ · S

Fig. 5. Syntax of SIFTAL

heap addresses to security types. We assume that Ψ maps code block security
types to code labels L and tuple security types to tuple pointers p.

A machine configuration is a tuple (H, R, B), where H is the heap (mapping
heap labels to heap values), R is a register bank (mapping registers to word
values), and B is the currently executing code block. A heap label
 is either a code
label L or a tuple label p. A heap value h is either a code block (annotated with
a security type) Code〈∀[Θ]Γ | pc〉l.B or a tuple of word values 〈w1, . . . , wn〉,
also denoted 〈w〉.

A word value is either an integer constant (i), a heap label (p or L) or a heap
label followed by a series of stack types of the form L[Σ1] . . . [Σn], (expressions of
the form p[Σ1] . . . [Σn] and i[Σ1] . . . [Σn] are ruled out by the type system). The
register bank is a finite set of registers ri, including a designated stack pointer
sp which points to the top of the stack. A stack is modeled as a sequence of
stack components: either word values or the special “nonsense” value ns, used
for newly allocated stack space.

Besides standard assembly instructions, SIFTAL has instructions to manipu-
late the execution stack (salloc, sfree, sst, and sld) and to handle the junc-
tion points (pushJP and jmpJP). Note that both jmp and jmpJP may instantiate
the stack variables of the destination code. For example, jmp L[Σ] instantiates
the stack variable of code block L with Σ before jumping to it (cf. Sec. 2.3).

2.2 Type System

In order to present the type system of SIFTAL, we need to define some notation
first: if Γ = {r1 : σ1, . . . , rn : σn, sp : Σ}, then Dom(Γ) is the set {r1, . . . , rn, sp},
and Γ [r := σ] is the register bank type resulting from updating Γ with r : σ. We
define label(τ l) = l. We use Γ{X ← Σ} for the result of substituting all free
occurrences of the stack type variable X in Γ with Σ. A similar notation is used
for substituting inside word values, operands, types, code blocks, etc. If Θ is a
sequence of stack type variables X1, . . . , Xn and Σ is a sequence of stack types

Information Flow Analysis for a TAL with Polymorphic Stacks 43

Θ | Γ | pc �Ψ B blk

Θ � Γ ok Γ (sp) = Halt · Σ
T Halt

Θ | Γ | pc �Ψ halt blk

Θ | Γ �Ψ v : Code〈∀[·]Γ ′ | pc′〉l′ opnd
Θ � Code〈∀[·]Γ ′ | pc′〉 ≤ Code〈∀[·]Γ | pc � l′〉 T Jmp

Θ | Γ | pc �Ψ jmp v blk

Θ � Code〈∀[·]Γ ′{X ← Σ} | pc′〉 ≤ Code〈∀[·]Γ [sp := Σ′] | l〉
Γ ′(sp) = α1 · . . . αn · X Θ � Σ ok Γ (sp) = L · Σ′ Ψ(L) = Code〈∀[X]Γ ′ | pc′〉l

T Jmpcc
Θ | Γ | pc �Ψ jmpJPL[Σ] blk

Θ | Γ �Ψ rs : intl1 opnd Θ | Γ �Ψ v : int l2 opnd
pc � l1 � l2 � label(Γ (rd)) Θ | Γ [rd := intlabel(Γ (rd))] | pc �Ψ B blk T Arith

Θ | Γ | pc �Ψ aop rd, rs, v; B blk

Θ � Code〈∀[·]Γ ′ | pc′〉 ≤ Code〈∀[·]Γ | pc � l1 � l2〉
Θ | Γ �Ψ r : intl1 opnd Θ | Γ �Ψ v : Code〈∀[·]Γ ′ | pc′〉l2 opnd

Θ | Γ | pc � l1 �Ψ B blk
T CondBrnch

Θ | Γ | pc �Ψ bnz r, v; B blk

Θ | Γ �Ψ v : τ
l1
1 opnd pc � l1 � label(Γ (r)) Θ | Γ [r := τ

label(Γ (r))
1] | pc �Ψ B blk

T Mov
Θ | Γ | pc �Ψ mov r, v; B blk

Fig. 6. Typing rules for code blocks (part I)

Σ1, . . . , Σn, then we write Γ{Θ ← Σ} for Γ{X1 ← Σ1}{X2 ← Σ2} . . . {Xn ←
Σn}, if {Xi, . . . , Xn} ∩ FV (Σi−1) = ∅, for 2 ≤ i ≤ n.

The typing judgments that determine when a code block B is well-typed
under type assignment Θ, register type Γ , program counter security level pc and
heap type Ψ , are given in Figs. 6 and 7. A halt instruction is treated as a jump
to a special junction point that halts the program execution. As a consequence,
the stack type must have the label Halt at the top. The judgment Θ � Γ ok
verifies that the register bank type is well-formed under type assignment Θ,
that is, that the free variables in Γ are declared in the type assignment Θ (see
[6] for a formal statement). In order for a jmp v instruction to be well-typed, the
current register bank type must be compatible with that which is expected at
the destination label denoted by v. This is enforced by means of the subtyping
judgment. The subtyping relation is omitted here for reasons of space, but it
includes the standard requirements that it be a partial order (on types, security
types and register bank types) and uses width subtyping for register bank types.
Moreover, in order to avoid illegal flows, a jump instruction can only jump to a
code block with the same or higher security level. Therefore, the security level of
the destination code label must be higher than or equal to the current level pc
of the program counter together with the security label of the destination code
label l′.

The jmpJP L[Σ] instruction is similar, although not identical, to the jmp case.
First of all, in order to jump to the next junction point L, it must appear at

44 E. Bonelli, A. Compagnoni, and R. Medel

Θ | Γ �Ψ rs : 〈σ0, . . . , σi, . . . , σn−1〉l1 opnd pc � l1 � label(σi)
label(σi) � label(Γ (rd)) Θ | Γ [rd := σi] | pc �Ψ B blk

T Ld
Θ | Γ | pc �Ψ ld rd, rs[i]; B blk

Θ | Γ �Ψ rd : 〈σ0, . . . , σi, . . . , σn−1〉l opnd Θ | Γ �Ψ rs : σi opnd
pc � l � label(σi) Θ | Γ | pc �Ψ B blk

T St
Θ | Γ | pc �Ψ st rd[i], rs; B blk

Ψ(L) = Code〈∀[X]Γ ′ | pc′〉l′ pc � pc′ Γ (sp) = Σ Θ | Γ [sp := L · Σ] | pc �Ψ B blk
T Push

Θ | Γ | pc �Ψ pushJP L; B blk

Γ (sp) = Σ Θ | Γ [sp :=

i

ns · . . . · ns ·Σ] | pc �Ψ B blk
T Salloc

Θ | Γ | pc �Ψ salloc i; B blk

Γ (sp) = σ̂0 · . . . σ̂i−1 · Σ Θ | Γ [sp := Σ] | pc �Ψ B blk
T Sfree

Θ | Γ | pc �Ψ sfree i; B blk

Γ (sp) = σ̂0 · . . . · σ̂i · Σ pc � l � label(Γ (rd))
σ̂i = τ l Θ | Γ [rd := τ label(Γ (rd))] | pc �Ψ B blk

T Sld
Θ | Γ | pc �Ψ sld rd, sp[i]; B blk

Γ (sp) = σ̂0 · . . . · σ̂i · Σ pc � l

Θ | Γ �Ψ rs : τ l opnd Θ | Γ [sp := σ̂0 · . . . · σ̂i−1 · τ l · Σ] | pc �Ψ B blk
T Sst

Θ | Γ | pc �Ψ sst sp[i], rs; B blk

Fig. 7. Typing rules for code blocks (part II)

the top of the current stack type Γ (sp). Second, the current register bank type
must be compatible with the one expected at the destination code. In particular,
this includes passing on the pending junction points which appear in the type
of the current execution stack Γ (sp). The register bank type expected at the
destination label L is given by Ψ(L), where all occurrences of the stack type X
have been instantiated with Σ. In order to deal with the problem mentioned in
the introduction related to stack polymorphism, we assume that junction points
have only one free stack variable (which may of course occur any number of times
in Γ ′, the register bank type required by the destination code block) and that
the type of the stack Γ ′(sp) has an occurrence of X at the end (cf. condition
Γ ′(sp) = α1 · . . . · αn · X). This allows us to relate the type instantiated for
X , namely Σ, to the type of the current execution stack (Σ′) and this gives us
a handle on Σ when dealing with non-interference. Finally, since the program
counter level of the junction point is to be “reset” to pc′, the label l′ of the type
of L becomes irrelevant. This is addressed by requiring l′ � pc′, a condition
which is easily met by defining l′ appropriately.

T Arith types the arithmetic operators. Since the result of the operation de-
pends on the operands and the current program counter level, the register that
holds the result (rd) is required to have the appropriate security level. The rule
for mov is similar to T Arith. T CondBrnch, T Ld and T St are as expected (see
[6] for further details).

Information Flow Analysis for a TAL with Polymorphic Stacks 45

The pushJP L type directive simply adds the code label L to the top of the
stack type and types the rest of the code block under this new stack type. The
condition pc � pc′ makes sure that when the junction point L is invoked, the
label of the program counter does not drop below the current level pc.

Regarding salloc, we simply add i nonsense types to the stack type and
then typecheck the rest of the code under this new stack type. The instruction
that frees the top i components of the stack, namely sfree i, simply drops the
top i component types of the stack type and then types the rest of the program.
Two comments are in order here. First, the stack components that are freed must
not be code labels. This would interfere with the linear nature of the junction
points (the only directives that may manipulate junction points are jmpJP and
pushJP). Second, no condition on the security labels of the freed components
is required. This is a consequence of our approach to junction points which, for
example, guarantees that if components are freed before jumping to a low-level
junction point, then the freed components must have been secret (and hence not
observable to the low-level user). See the High-Step Invariant Lemma (Lemma 2)
for details.

The typing rules for sld and sst follow similar patterns to those discussed
above. T Sld requires that the stack component to be loaded be initialized (i.e.
not have nonsense type). We remark that it should be straightforward to extend
both T Sld and T Sst so as to allow loading stack components that are under
junction point labels, although the details remain to be verified.

Due to lack of space, we do not give here the typing rules for word values and
operands. In the case of word values, they assign int⊥ to integer constants and
look up the type in Ψ for code and tuple pointers. Also, there is a subsumption
rule that allows subtyping reuse: a word value of type σ may always be used
at any supertype σ′. Finally, a rule allows word values of the form w[Σ] to be
typed. Similar comments apply to the typing rules for operands. Two typing
rules are presented for typing heap values: one for typing a tuple 〈w1, . . . , wn〉
with a tuple security type 〈σ1, . . . , σn〉l componentwise, and another for typing
annotated code blocks.

The typing rules for execution stacks (Fig. 8) need no further comment except
for T ExeSLbl. This rule states that junction points in the execution stack type
may be ignored at run-time. Regarding heaps and register banks, the former
is well-typed if each of the labels in its domain is mapped to well-typed heap
values and the latter if each register different from sp is mapped to a well-typed
word value. Finally, a machine configuration (H, R, B) is well-typed if the heap,
register bank, current code block and execution stack are all well-typed.

2.3 Operational Semantics

The operational semantics of SIFTAL is shown in Fig. 9. Each rule establishes the
semantics of an instruction on the current machine configuration. We say that
Π reduces to Π ′ if Π −→ Π ′. We use � for the reflexive, transitive closure of
−→. The expression R̂(v) is defined as: R(r) if v = r, w if v = w, and R̂(v1)[Σ] if
v = v1[Σ]. The jmp v instruction is executed by first looking up the destination

46 E. Bonelli, A. Compagnoni, and R. Medel

�Ψ S : Σ estack

T ExeSNil
�Ψ ε : ε estack

�Ψ S : Σ estack · �Ψ w : σ wval
T ExeSCons

�Ψ w · S : σ · Σ estack

�Ψ S : Σ estack
T ExeSLbl

�Ψ S : L · Σ estack

�Ψ S : Σ estack
T ExeSConsNs

�Ψns · S : ns · Σ estack

�H : Ψ heap �Ψ R : Γ regBank �(H, R, B) machConfig

Dom(H) = Dom(Ψ) (∀
 ∈ Dom(H)) �Ψ H(
) : Ψ(
) hval � Ψ ok
T Heap

�H : Ψ heap

(∀r ∈ Dom(Γ) \ {sp}) · �Ψ R(r) : Γ (r) wval
T RegBank

�Ψ R : Γ regBank

�H : Ψ heap �Ψ R : Γ regBank
· | Γ | pc �Ψ B blk �Ψ R(sp) : Γ (sp) estack

T MachConfig
�(H, R, B) machConfig

Fig. 8. Type rules for execution stacks, heaps, register banks and machine configura-
tions

(H, R, B) −→ Π

where if B = then Π =
jmp v (H, R, B{Θ ← Σ}) OS Jmp

where R̂(v) = L[Σ] and H(L) = Code〈∀[Θ]Γ | pc′〉l.B
jmpJP L[Σ] (H, R, B{X ← Σ}) OS Jmpcc

where H(L) = Code〈∀[X]Γ | pc′〉l.B
aop rd, rs, v; B (H, R[rd := n], B) OS Arith

where n = R̂(v) ⊕ R̂(rs)
bnz r, v; B (H, R, B) OS Bnz1

where R̂(r) = 0
bnz r, v; B (H, R, B′{Θ ← Σ}) OS Bnz2

where R̂(r) �= 0, R̂(v) = L[Σ]
and H(L) = Code〈∀[Θ]Γ | pc′′〉l.B′

mov r, v; B (H, R[r := R̂(v)], B) OS Mov
ld rd, rs[i]; B (H, R[rd := wi], B) OS Load

where R̂(rs) = p and H(p) = 〈w0, . . . , wi, . . . , wn−1〉
st rd[i], rs; B (H[p := 〈w0, . . . , R(rs), . . . , wn−1〉], R, B) OS Store

where R̂(rd) = p and H(p) = 〈w0, . . . , wi, . . . , wn−1〉
pushJP L; B (H, R, B) OS Push
salloc i; B (H, R[sp := ns · . . . · ns

i

·S], B) OS Salloc

where R(sp) = S
sfree i; B (H, R[sp := S], B) OS Sfree

where R(sp) = ŵ0 · . . . · ŵi−1 · S
sld rd, sp[i]; B (H, R[rd := wi], B) OS Sld

where R(sp) = ŵ0 · . . . · ŵi · S
sst sp[i], rs; B (H, R[sp := ŵ0 · . . . · ŵi−1 · R(rs) · S], B) OS Sst

where R(sp) = ŵ0 · . . . · ŵi · S

Fig. 9. Operational semantics

Information Flow Analysis for a TAL with Polymorphic Stacks 47

code label L in v, obtaining the destination code block from the heap and finally
instantiating this code with the vector of stack types given in the operand. The
rule for jmpJP L[Σ] is the same as that of jmp v for v = L[Σ]. The remaining
rules are self explanatory. Note that pushJP is a type directive: it has no effect
at run-time. As a consequence, it could be erased once type checking has been
completed. Finally, we would like to point out that the semantics of SIFTAL is
exactly that of STAL, disregarding the malloc and pack instructions that are
not treated in this work.

The operational semantics is sound with respect to the type system. If a typed
machine configuration is not in a valid final state, then it can always progress
towards one, as formalized by the Progress and Subject Reduction propositions.
In order to formalize this, we use the notation �(H, R, B) : [Ψ, Γ,pc] machConfig
to mean that all of the judgments �H : Ψ heap, �ΨR : Γ regBank, �ΨR(sp) :
Γ (sp) estack and · | Γ | pc �Ψ B blk hold. A machine configuration Π is said
to be stuck at type [Ψ, Γ,pc] if �Π : [Ψ, Γ,pc] machConfig and Π is not of the
form (H, R, halt) with Γ (sp) = Halt · Σ and there does not exist a machine
configuration Π ′ such that Π −→ Π ′.

Proposition 1 (Progress). If �Π : [Ψ, Γ,pc] machConfig then either there
exists Π ′ such that Π −→ Π ′, or Π is of the form (H, R, halt) with Γ (sp) =
Halt ·Σ.

Proposition 2 (Subject Reduction). If �Π machConfig and Π −→ Π ′

then �Π ′ machConfig.

3 Non-interference

Non-interference is a semantic property that states that computed low security
level values should not be affected by high security ones. Here, “low security” and
“high security” are relative to an arbitrary, but fixed a priori, security level ζ that
determines what an observer can see (low security values) and what he cannot
(high security values). A low security value or typ) is thus one whose security
level is less than or equal to ζ; a high security value or type is one whose security
level is not less than or equal to ζ. The formalization of non-interference proceeds
by defining a notion of indistinguishable machine configuration with respect to
the observer (we call this ζ-indistinguishability) and then showing that given any
two runs of a program that start at indistinguishable machine configurations, if
they terminate1 then they both reach indistinguishable machine configurations.
These two issues are studied in this section.

3.1 ζ-Indistinguishability

An appropriate notion of ζ-indistinguishability for machine configurations re-
quires taking into account each of its components, namely heap, register bank
1 Termination sensitive information flow analysis is an active topic of research. How-

ever, it is not considered in this paper.

48 E. Bonelli, A. Compagnoni, and R. Medel

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackLow

EqES LAxiom
�Ψ1,Ψ2ε ≈ζ ε : ε ∧ ε estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackLow �Ψ1,Ψ2 w1 ≈ζ w2 : σ1 ∧ σ2 wval
EqES LLLHH

�Ψ1,Ψ2w1 · S1 ≈ζ w2 · S2 : σ1 · Σ1 ∧ σ2 · Σ2 estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackLow
EqES LNonsense

�Ψ1,Ψ2ns · S1 ≈ζ ns · S2 : ns · Σ1 ∧ ns · Σ2 estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackLow l �� ζ
EqES LHighNs

�Ψ1,Ψ2w1 · S1 ≈ζ ns · S2 : τ
l · Σ1 ∧ ns · Σ2 estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackLow l �� ζ
EqES LNsHigh

�Ψ1,Ψ2ns · S1 ≈ζ w2 · S2 : ns · Σ1 ∧ τ
l · Σ2 estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackLow Ψ1(L) = Ψ2(L) = Code〈∀[Θ]Γ | pc〉l pc � l � ζ
EqES LSynch

�Ψ1,Ψ2S1 ≈ζ S2 : L · Σ1 ∧ L · Σ2 estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackLow Ψ1(L1) = Code〈∀[Θ1]Γ1 | pc1〉l1

Ψ2(L2) = Code〈∀[Θ1]Γ2 | pc2〉l2 pc1 � l1 �� ζ pc2 � l2 �� ζ EqES LHighSynch
�Ψ1,Ψ2S1 ≈ζ S2 : L1 · Σ1 ∧ L2 · Σ2 estackLow

Fig. 10. Indistinguishable execution stacks at low level program counter

(including the execution stack) and currently executing code block. We begin
our discussion with the execution stack. Clearly, when two runs of the same
program are considered, they are seen to execute in lock-step fashion as long as
no branching instruction appears. Moreover, the execution stack of each run is
seen to have the same size and contain either the same low level values or high
level ones. In this case we say that the stacks are low level indistinguishable and
formalize this notion in Fig. 10. Once a branching instruction appears, say bnz
r,v, the register r may either contain a low level value (in which case both pro-
grams are, once again, seen to execute in lock-step fashion) or it may be a high
level value. In this last case, each run may take a different path (we talk about
different high level branches) since this high level value may not coincide in both
machine configurations. As a consequence, the execution stacks may begin to
vary as a result of the execution of the subsequent instructions. In this case we
say that the stacks are high level indistinguishable and formalize this notion in
Fig. 11. However, note that before any further instruction is executed, the exe-
cution stacks of the two machine configurations are low level indistinguishable
(cf. EqES HAxiom in Fig. 11).

We have yet to clarify the meaning of �Ψ1,Ψ2w1 ≈ζ w2 : σ1 ∧ σ2 wval, which
relates to the indistinguishability of word values, used when defining low level in-
distinguishability of stacks. The näıve approach would be to state that two word
values are low indistinguishable if σ1, σ2 are low security, σ1 = σ2 and w1 = w2,
and high indistinguishable if σ1 and σ2 are high security. However, the presence

Information Flow Analysis for a TAL with Polymorphic Stacks 49

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackLow
EqES HAxiom

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackHigh l �� ζ
EqES HLeft

�Ψ1,Ψ2w · S1 ≈ζ S2 : τ l · Σ1 ∧ Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackHigh l �� ζ
EqES HRight

�Ψ1,Ψ2S1 ≈ζ w · S2 : Σ1 ∧ τ
l · Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackHigh
EqES HLeftNs

�Ψ1,Ψ2ns · S1 ≈ζ S2 : ns · Σ1 ∧ Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackHigh
EqES HRightNs

�Ψ1,Ψ2S1 ≈ζ ns · S2 : Σ1 ∧ ns · Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackHigh Ψ1(L) = Code〈∀[Θ]Γ | pc〉l pc � l �� ζ
EqES HLeftSynch

�Ψ1,Ψ2S1 ≈ζ S2 : L · Σ1 ∧ Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ Σ2 estackHigh Ψ2(L) = Code〈∀[Θ]Γ | pc〉l pc � l �� ζ
EqES HRightSynch

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ L · Σ2 estackHigh

Fig. 11. Indistinguishable execution stacks at high level program counter

of stack polymorphism complicates matters. Consider the following SIFTAL pro-
gram, where B is the current code block and σX = Code〈∀[Θ]{sp : X} | pc〉⊥.

B = pushJP LJP
bnz r, L1
jmpJP LJP [Σ1]

L1 Code〈∀[X]{r1 : σX , sp : X} | 	〉�

jmpJP LJP [Σ2]

LJP Code〈∀[Y]{r1 : σY , sp : Y } | ⊥〉⊥

. . .

Suppose that we have two runs of this program. Moreover, suppose that the
initial machine configuration of each run satisfies the following conditions:

1. they both assign the program counter some (one) low level value,
2. they assign low level indistinguishable execution stacks to sp, and
3. the register bank of the first configuration assigns 0 to the register r while

the register bank of the other machine configuration assigns 1 to r. Note
that these values are high indistinguishable.

At the bnz instruction one run shall jump to L1 while the other shall continue
with the following instruction. At some point, both runs shall “synchronize”
once they reach the junction point LJP . Moreover, this junction point resets the
program counter to a low security level, namely ⊥. Note, however, that at this
point in time the current machine configuration of each run differs in the type of
r1, since X has been instantiated with different types (Σ1 and Σ2). Hence they
cannot be low indistinguishable according to the aforementioned näıve definition.

50 E. Bonelli, A. Compagnoni, and R. Medel

As a result, when defining low indistinguishability of word values we must
allow the types of these values (σ1 and σ2 in �Ψ1,Ψ2w1 ≈ζ w2 : σ1 ∧ σ2 wval)
to differ by instantiation of stack variables with different execution stack types.
Furthermore, these execution stack types may not be arbitrary, they should also
be low indistinguishable. For this reason, in order to formalize the definition of
the judgment �Ψ1,Ψ2w1 ≈ζ w2 : σ1 ∧ σ2 wval we first introduce the notion of
low-indistinguishable security and stack types

�Ψ1,Ψ2σ1 ≈ζ σ2 secTypeEq and �Ψ1,Ψ2 Σ1 ≈ζ Σ2 stackTypeEq

These notions are defined by simultaneous induction. Informally, types σ1 and
σ2 are low indistinguishable if there is some security type σ and substitutions s1,
s2 on stack variables such that σ1 = s1(σ), σ2 = s2(σ) and s1 and s2 assign low
indistinguishable stacks to the same variables. The same applies to the notion
of low indistinguishable stack types.

With this in place we can now complete our development of indistinguishabil-
ity of machine configurations by defining the notion for word values, heap values,
heaps, register banks and code blocks (Fig. 12). In the case of word values the
judgment �Ψ1,Ψ2w1 ≈ζ w2 wvalEq holds iff there exist substitutions s1, s2 and
word value w such that:

1. Dom(s1) = Dom(s2) = FV (w),
2. w1 = s1(w) and w2 = s2(w), and
3. for every X ∈ Dom(s1), Ψ1, Ψ2 � s1(X) ≈ζ s2(X) stackTypeEq.

In Fig. 12 we write Dom∪(Ψ1, Ψ2) as an abbreviation for Dom(Ψ1) ∪ Dom(Ψ2).
Likewise, Dom∩(H1, H2, Ψ1, Ψ2) abbreviates Dom(H1)∩Dom(H2)∩Dom(Ψ1)∩
Dom(Ψ2).

Finally, we address ζ-indistinguishability of machine configurations. Both are
required to be well-typed and their heaps and register banks ζ-indistinguishable.
Furthermore, if their program counters are low level, then we are in the case that
both programs are executing in lock-step fashion and, as a consequence, their
program counters should have identical security levels, and both their currently
executing code blocks and their stacks should be low indistinguishable. If their
program counters are high level, then no condition applies to their currently
executing code blocks, but their stacks must be high indistinguishable.

Definition 1 (ζ-indistinguishability of machine configurations). Assume
machine configurations Πi = (Hi, Ri, Bi) and machine types Ωi = [Ψi, Γi,pci],
i ∈ 1..2. Then the judgment �Π1 ≈ζ Π2 : Ω1 ∧Ω2 machConfig holds iff

1. �Π1 : Ω1 machConfig and �Π2 : Ω2 machConfig,
2. �H1 ≈ζ H2 : Ψ1 ∧ Ψ2 heap,
3. �Ψ1,Ψ2R1 ≈ζ R2 : Γ1 ∧ Γ2 regBank,
4. (a) either pc1 = pc2 � ζ and �Ψ1,Ψ2B1 ≈ζ B2 code and �Ψ1,Ψ2R1(sp) ≈ζ

R2(sp) : Γ1(sp) ∧ Γ2(sp) estackLow,
(b) or pc1 �� ζ and pc2 �� ζ and �Ψ1,Ψ2R1(sp) ≈ζ R2(sp) : Γ1(sp) ∧

Γ2(sp) estackHigh.

Information Flow Analysis for a TAL with Polymorphic Stacks 51

�Ψ1,Ψ2w1 ≈ζ w2 : σ1 ∧ σ2 wval

l1 �� ζ l2 �� ζ
Eq wval L

�Ψ1,Ψ2w1 ≈ζ w2 : τ
l1
1 ∧ τ

l2
2 wval

l1 = l2 � ζ

�Ψ1,Ψ2τ
l1
1 ≈ζ τ

l2
2 secTypeEq

�Ψ1,Ψ2w1 ≈ζ w2 wvalEq
Eq wval H

�Ψ1,Ψ2w1 ≈ζ w2 : τ
l1
1 ∧ τ

l2
2 wval

�Ψ1,Ψ2h1 ≈ζ h2 : σ1 ∧ σ2 hval

l1 �� ζ l2 �� ζ
Eq hval H

�Ψ1,Ψ2h1 ≈ζ h2 : τ
l1
1 ∧ τ

l2
2 hval

l1 = l2 � ζ
�Ψ1,Ψ2wi ≈ζ w′

i : σi ∧ σ′
i wval

Eq hval tpl L
�Ψ1,Ψ2〈w〉 ≈ζ 〈w′〉 : 〈σ〉l1 ∧ 〈σ′〉l2 hval

l1 = l2 � ζ κ
l1
1 .B1 = κ

l2
2 .B2

Eq hval blk L
�Ψ1,Ψ2κ

l1
1 .B1 ≈ζ κ

l2
2 .B2 : κ

l1
1 ∧ κ

l2
2 hval

�H1 ≈ζ H2 : Ψ1 ∧ Ψ2 heap holds iff for all � ∈ Dom∪(Ψ1, Ψ2) :

label(Ψ1(�)) � ζ or label(Ψ2(�)) � ζ, implies � ∈ Dom∩(H1, H2, Ψ1, Ψ2),
�Ψ1,Ψ2H1(�) ≈ζ H2(�) : Ψ1(�) ∧ Ψ2(�) hval.

�Ψ1,Ψ2R1 ≈ζ R2 : Γ1 ∧ Γ2 regBank holds iff for all r ∈ Dom∪(Γ1, Γ2) \ {sp} :

label(Γ1(r)) � ζ or label(Γ2(r)) � ζ, implies r ∈ Dom∩(R1, R2, Γ1, Γ2),
�Ψ1,Ψ2R1(r) ≈ζ R2(r) : Γ1(r) ∧ Γ2(r) wval.

�Ψ1,Ψ2B1 ≈ζ B2 code holds iff ∃s1, s2, B such that :

1. Dom(s1) = Dom(s2) = FV (B)
2. B1 = s1(B) and B2 = s2(B) and
3. for every X ∈ Dom(s1), Ψ1, Ψ2 � s1(X) ≈ζ s2(X) stackTypeEq.

Fig. 12. ζ-indistinguishability of word, heap values, heaps, register banks, code blocks

3.2 Noninterference Theorem

This section addresses the formulation and proof of the non-interference theorem,
the main result of this work. As mentioned, we consider two runs of the same
program that start off from indistinguishable machine configurations. Moreover,
we assume that the initial security level of the program counter is ⊥ and that
the execution stack has the Halt code label at the top.

Theorem 1 (Non-Interference). For i ∈ {1, 2}, given machine configura-
tions Πi = (Hi, Ri, B) and machine types Ωi = [Ψi, Γi,⊥], if these conditions
hold:

– Γ1(sp) = Halt ·Σ1 and Γ2(sp) = Halt ·Σ2,
– �Π1 ≈ζ Π2 : [Ψ1, Γ1,⊥] ∧ [Ψ2, Γ2,⊥] machConfig,
– Π ′

1 = (H ′
1, R

′
1, halt) and Π1 � Π ′

1, and
– Π ′

2 = (H ′
2, R

′
2, halt) and Π2 � Π ′

2,

then there exist machine types [Ψ1, Γ
′
1,pc′1] and [Ψ2, Γ

′
2,pc′2] such that:

�Π ′
1 ≈ζ Π ′

2 : [Ψ1, Γ
′
1,pc′1] ∧ [Ψ2, Γ

′
2,pc′2] machConfig.

52 E. Bonelli, A. Compagnoni, and R. Medel

The proof first considers one step reduction sequences and then weaves these
together by means of an inductive argument on the length of the reduction se-
quences. Moreover, two kinds of one step reduction steps are considered, one
where the program counter is low (Low PC Lemma) and one where the program
counter is high (High PC Lemma). The proof of the Low PC Lemma does not
present difficulties. It consists of showing that each step of the first machine con-
figuration Π1 can be mimicked by one step of the second machine configuration
Π2 such that ζ-indistinguishable machine configurations are reached.

Lemma 1 (Low PC Lemma). Given machine configurations Πi =(Hi, Ri, Bi)
and machine types Ωi = [Ψi, Γi,pci], i ∈ 1..2. Suppose �Π1 ≈ζ Π2 : Ω1 ∧
Ω2 machConfig, pc1 � ζ and pc2 � ζ, and Π1 −→ Π ′

1. Then there exists a
machine configuration Π ′

2 and machine configuration types Ω′
1 = [Ψ1, Γ

′
1,pc′1]

and Ω′
2 = [Ψ2, Γ

′
2,pc′2] such that Π2 −→ Π ′

2 and �Π ′
1 ≈ζ Π ′

2 : [Ψ1, Γ
′
1,pc′1] ∧

[Ψ2, Γ
′
2,pc′2] machConfig.

On the other hand, the key case in the proof of the High PC Lemma is when
the reduction step Π1 −→ Π ′

1 lowers the level of the program counter by jump-
ing to a junction point with low level program counter. A machine configura-
tion Π ′

2 must be found such that Π2 � Π ′
2 and such that Π ′

1 and Π ′
2 are

ζ-indistinguishable. The main obstacle is how to guarantee that the execution
stacks of Π1 and Π2, previously high indistinguishable and possibly of different
sizes, are now low indistinguishable and of the same size. Since we started off
with a low security program counter (cf. statement of Non-Interference Theorem)
we know that the stacks of Π1 and Π2 have a common, low indistinguishable
substack. The point is that we must make sure that this substack becomes the
current stack when the junction point is jumped to. This is possible because junc-
tion points are part of the execution stack types. More precisely, when Π1 −→ Π ′

1
jumps to a junction point L, it must be the case that the type of the execution
stack of Π1 is of the form L ·Σ1. Furthermore, from the fact that the program
counter in the type of Ψ(L) is low and �Ψ1,Ψk

S1 ≈ζ S2 : L ·Σ1 ∧Σ2 estackHigh,
we deduce that, Σ2 =? · . . . ·? ·L ·Σ′

2 and S2 = w1 · . . . ·wm ·S′
2, m ≤ n, where the

question marks “?” may either be junction points, nonsense types or security
types. Moreover,

�Ψ1,Ψk
S1 ≈ζ S′

2 : Σ1 ∧Σ′
2 estackLow (1)

must hold by the definition of the estackHigh judgment. The fact that these
question marks are high level types is necessary and is guaranteed by the follow-
ing definition and result:

Definition 2. An execution stack type Σ is said to be ζ-topped in Σ′, if there
exist labels L1, . . . , Ln (possibly none) and stack component types σ̂i,1, . . . , σ̂i,ki ,
i ∈ 1..n (possibly none) such that:

– Σ′ = σ̂1,1 · . . . · σ̂1,k1 · L1 · σ̂2,1 · . . . · σ̂2,k2 · L2 · . . . · σ̂n,1 · . . . · σ̂n,kn · Ln ·Σ,
– Ψ(Li) = Code〈∀[Xi]Γi | pci〉li implies pci � li �� ζ, for all 1 ≤ i ≤ n, and
– label(σ̂ij) �� ζ, for all 1 ≤ i ≤ n and 1 ≤ j ≤ ki.

Information Flow Analysis for a TAL with Polymorphic Stacks 53

Lemma 2 (High-Step Invariant). For i ∈ 1..k, assume that machine config-
urations Πi = (Hi, Ri, Bi) and machine types Ωi = [Ψi, Γi,pci] are such that:

1. Π1 � Πk,
2. �Πi : Ωi machConfig, i ∈ 1..k, and Ωi is given by the Subject Reduction

Theorem, for i ∈ 2..k,
3. pc1 �� ζ, and
4. Γk(sp) = L ·Σk, for some L and Σk, is ζ-topped in Γi(sp), for each i ∈ 1..k.

Then all of the following hold: �H1 ≈ζ Hk : Ψ1 ∧ Ψk heap, �Ψ1,Ψk
R1 ≈ζ Rk :

Γ1 ∧ Γk regBank, �Ψ1,Ψk
R1(sp) ≈ζ Rk(sp) : Γ1(sp) ∧ Γk(sp) estackHigh, and

pci �� ζ, for all 1 ≤ i ≤ k.

Thus, if we know that the reduction starting from Π2 terminates, we obtain the
desired result that at some point the junction point L is invoked by a machine
state reachable from Π2. At this point, according to (1), the machine configu-
rations “synchronize” at a low security level program counter. The proof of the
High PC Lemma proceeds by case analysis on the definition of Π1 −→ Π ′

1, using
the High Step Invariant Lemma in the case that this reduction step is a jump
to a junction point that resets the program counter to low security level.

Lemma 3 (High PC Lemma). For i ∈ 1..2, consider machine configurations
Πi = (Hi, Ri, Bi) and machine types Ωi = [Ψi, Γi,pci]. Suppose �Π1 ≈ζ Π2 :
Ω1 ∧ Ω2 machConfig, pc1 �� ζ and pc2 �� ζ, Π1 −→ Π ′

1, and Π2 terminates.
Then there exist a machine configuration Π ′

2 and machine configuration types
Ω′

1 = [Ψ1, Γ
′
1,pc′1] and Ω′

2 : [Ψ2, Γ
′
2,pc′2] such that Π2 � Π ′

2 and �Π ′
1 ≈ζ Π ′

2 :
[Ψ1, Γ

′
1,pc′1] ∧ [Ψ2, Γ

′
2,pc′2] machConfig.

Finally, the proof of the Non-interference Theorem (Theorem 1) follows by weav-
ing reduction steps whose departing machine configurations have a low or high
security level program counter using the Low PC or the High PC Lemmas (Lem-
mas 1 and 3), respectively.

4 Conclusions, Related Work and Future Research

We present a TAL with a polymorphic execution stack, a type system enforcing
secure information flow, and a proof of non-interference. The problems stem-
ming from the absence of control flow constructs and the challenges raised by
polymorphic execution stacks are addressed by including explicit junction points
in types and introducing appropriate type directives (pushJP and jmpJP) that
manipulate them. As an added benefit, we are able to ensure that junction points
are treated as linear continuations and that pending junction points are passed
on as obligations. Since pushJP is a type directive, it may be eliminated during
execution, while jmpJP may be replaced by a standard jump instruction at run-
time. The type system keeps track of two stacks: the execution stack type and
the junction points stack. In general, two separate stacks cannot be combined
into one; however, in this case the type system enforces a discipline that allows

54 E. Bonelli, A. Compagnoni, and R. Medel

this combination, where a jump to a junction point L can only be done if L is
at the top of the execution stack type.

Information flow analysis has been an active research area in the past three
decades [22]. Pioneering work by Bell and LaPadula [4], Feiertag et al. [12],
Denning and Denning [10, 11], Neumann et al. [21], and Biba [5] set the basis of
multilevel security by defining a model of information flow where subjects and
objects have a security level from a lattice of security levels. A subject cannot
read objects of level higher than its level, and it cannot write objects at levels
lower than its level.

Non-interference was first introduced by Goguen and Meseguer [13], and
there has been a significant amount of research on type systems for confiden-
tiality for high-level languages, including Volpano and Smith [24] and Banerjee
and Naumann [2]. Type systems for low-level languages have been an active sub-
ject of study for several years now, including TAL [17], STAL [16], DTAL [25],
Alias Types [23], and HBAL [1].

In his PhD thesis [20], Necula already suggests information flow analysis as
an open research area at the assembly language level. Zdancewic and Myers [28]
present a low-level, secure calculus with ordered linear continuations. This low-
level calculus, like the calculus developed by Crary et al. [9], possesses high-level
control flow structures (such as if-then-else) that simplify the analysis but
require an extra, unanalyzed, translation to obtain a real low-level executable
program. Moreover, none of these calculi includes a register bank or an execution
stack. Barthe et al. [3] define a JVM-like low-level language with a heap and
an operand stack. Instead of expressing the control dependence regions in the
language, as in SIFTAL, this work assumes the existence of trusted functions that
obtain such regions. Moreover, when a high branch is executed, the security level
of all the elements on the stack is raised and is never lowered back, even when
the execution returns to a low-security region.

We have recently learned from personal communication with Dachuan Yu
about independent work on information flow analysis for TAL-c [26], a calculus
similar in spirit to SIFTAL. Based on a preliminary manuscript we can identify
differences in the definitions of equivalence of machine configurations, where,
for example, their definition forces stacks to be of equal length, preventing the
stack from being manipulated in a high branch. TAL-c has primitives to raise
and lower the security level of the pc that delimit security regions, similar to our
pushJP and jmpJP. However, the interaction of these primitives with stack type
variables may potentially pull such variables beyond their scope, unless some
stringent closure condition is required on typing contexts.

We are currently developing a type preserving compilation scheme from a
high-level imperative language to SIFTAL, and studying unrestricted register
reuse. The community’s opinion is divided on whether registers are observable
or not. If they are, then the reuse of a register to store data of lower security level
may be seen as a leak of information, even if the data itself is not accessible.
Although SIFTAL allows the reuse of registers, the security level of a register

Information Flow Analysis for a TAL with Polymorphic Stacks 55

remains fixed throughout execution. Lifting this restriction is the subject of
current research.

Recent developments [27, 8, 18, 19] argue that mechanisms enforcing the ab-
sence of illegal information flows are too drastic to be practical. They study
high-level languages with declassification, a controlled form of sidestepping of
confidentiality policies. A notion of declassification for TALs is required for
type preserving compilation of such languages. However, this area remains un-
explored.

Acknowledgments. We are grateful to Pablo Garralda, Healfdene Goguen,
David Naumann, and Alejandro Russo for enlightening discussions. We also
thank Joëlle Despeyroux and Dachuan Yu for comments on earlier drafts. This
work was partially supported by the NSF project CAREER: A formally verified
environment for the production of secure software – #0093362 and the Stevens
Technogenesis Fund.

References

1. D. Aspinall and A. B. Compagnoni. Heap bounded assembly language. Journal
of Automated Reasoning, Special Issue on Proof-Carrying Code, 31(3-4):261–302,
2003.

2. A. Banerjee and D. Naumann. Secure information flow and pointer confinement in
a Java-like language. In Proceedings of Fifteenth IEEE Computer Security Foun-
dations - CSFW, pages 253–267, June 2002.

3. G. Barthe, A. Basu, and T. Rezk. Security types preserving compilation. In
Proceedings of VMCAI’04, volume 2937 of Lecture Notes in Computer Science.
Springer-Verlag, 2004.

4. D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations
and model. Technical Report Technical Report MTR 2547 v2, MITRE, November
1973.

5. K. Biba. Integrity considerations for secure computer systems. Technical Report
ESD-TR-76-372, USAF Electronic Systems Division, Bedford, MA, April 1977.

6. E. Bonelli, A. Compagnoni, and R. Medel. Information flow analysis for a typed
assembly language with polymorphic stacks.
http://www.cs.stevens.edu/~ rmedel/siftalTechReport.ps, 2005.

7. E. Bonelli, A. Compagnoni, and R. Medel. SIFTAL: A typed assembly language
for secure information flow analysis.
http://www.cs.stevens.edu/~ rmedel/techReport.ps, 2005.

8. T. Chothia, D. Duggan, and J. Vitek. Type-based distributed access control. In
Proc. of IEEE Computer Security Foundations Workshop, Asilomar, California,
2003.

9. K. Crary, A. Kliger, and F. Pfenning. A monadic analysis of information flow
security with mutable state. Technical Report CMU-CS-03-164, Carnegie Mellon
University, September 2003.

10. D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–242, May 1976.

11. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504–513, July 1977.

56 E. Bonelli, A. Compagnoni, and R. Medel

12. R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of a
system design. In 6th ACM Symp. Operating System Principles, pages 57–65,
November 1977.

13. J. A. Goguen and J. Meseguer. Security policy and security models. In Proceedings
of the Symposium on Security and Privacy, pages 11–20. IEEE Press, 1982.

14. D. Hedin and D. Sands. Timing aware information flow security for a JavaCard-like
bytecode. In Proceedings of the First Workshop on Bytecode Semantics, Verifica-
tion, Analysis and Transformation (Bytecode 2005), volume 141(1) of Electronic
Notes in Theoretical Computer Science, pages 163–182, December 2005.

15. R. Medel, A. Compagnoni, and E. Bonelli. A typed assembly language for non-
interference. In M. Coppo, E. Lodi, and G. M. Pinna, editors, Ninth Italian Con-
ference on Theoretical Computer Science - ICTCS 2005, volume 3701 of LNCS,
pages 360–374, Certosa di Pontignano, Siena (Italy), October 2005. Springer.

16. G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed assembly
language. In Second International Workshop on Types in Compilation, pages 95–
117, Kyoto, March 1998. Published in Xavier Leroy and Atsushi Ohori, editors,
Lecture Notes in Computer Science, volume 1473, pages 28-52. Springer-Verlag,
1998.

17. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed As-
sembly Language. ACM Transactions on Programming Languages and Systems,
21(3):528–569, May 1999. This is the expanded version of a paper that appeared in
Twenty-Fifth ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 85-97, San Diego, CA, USA, January 1998.

18. A. Myers and A. Sabelfeld. A model for delimited information release. In Inter-
national Symposium on Software Security, volume 3233 of LNCS, Tokyo, Japan,
2003.

19. A. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. 7th
IEEE Computer Security Foundations Workshop, 2004.

20. G. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, Sep-
tember 1998.

21. P. G. Neumman, R. J. Feiertag, K. N. Levitt, and L. Robinson. Software devel-
opment and proofs of multi-level security. In Proceedings of the 2nd International
Conference on Software Engineering, pages 421–428. IEEE Computer Society, Oc-
tober 1976.

22. A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications, 21(1), 2003.

23. F. Smith, D. Walker, and G. Morrisett. Alias types. In Gert Smolka, editor,
Ninth European Symposium on Programming, volume 1782 of LNCS, pages 366–
381. Springer-Verlag, April 2000.

24. D. M. Volpano and G. Smith. A type-based approach to program security. In
TAPSOFT, pages 607–621, 1997.

25. H. Xi and R. Harper. A dependently typed assembly language. Technical Report
OGI-CSE-99-008, Oregon Graduate Institute of Science and Technology, July 1999.

26. D. Yu and N. Islam. A typed assembly language for confidentiality. Personal
Communication, July 2005.

27. S. Zdancewic and A. Myers. Robust declassification. In Proc. of 14th IEEE Com-
puter Security Foundations Workshop, pages 15–23, Cape Breton, Canada, June
2001.

28. S. Zdancewic and A. Myers. Secure information flow via linear continuations.
Higher Order and Symbolic Computation, 15(2–3), 2002.

Romization: Early Deployment and
Customization of Java Systems for Constrained

Devices�

Alexandre Courbot1, Gilles Grimaud1, and Jean-Jacques Vandewalle2

1 Laboratoire d’Informatique Fondamentale de Lille,
IRCICA/LIFL, Univ. Lille 1, CNRS UMR 8022, INRIA Futurs,

59655 Villeneuve d’Ascq Cédex, France
Alexandre.Courbot@lifl.fr,
Gilles.Grimaud@lifl.fr

2 Gemplus Systems Research Labs,
La Vigie - ZI Athélia IV,

13705 La Ciotat Cedex, France
Jean-Jacques.Vandewalle@research.gemplus.com

Abstract. Memory is one of the scarcest resource of embedded and
constrained devices. This paper studies the memory footprint benefit
of pre-deploying embedded Java systems up to their activation using
romization. We find out that the more the system is deployed off-board,
the more it can be efficiently and automatically customized in order to
reduce its final size. This claim is validated experimentally through the
production of memory images that are between 10% and 45% the size
of their J2ME CLDC counterparts, while using the J2SE API and be-
ing ready-to-run without any further on-board initialization. Embedded
solutions like J2ME degrade the Java environment and API right from
their specification, limiting their usage perspectives. By contrast, our
romization scheme generates and specializes a custom-tailored Java API
for embedded applications deployed in a full-fledged J2SE environment.

1 Introduction

Embedded and constrained devices programming is evolving towards more so-
phisticated and secure programming languages. In particular, strong efforts have
been made during the last years to allow embedded applications to be written
in Java. However, the low amount of memory and safety constraints of these
devices make heavy runtime environments such as J2SE inapplicable to them.
For these reasons, stripped-down versions of the Java environment have been
defined, like Java 2 Micro Edition or Java Card.

Unfortunately, these special editions of the Java environment are incompati-
ble with J2SE. For instance, Java Card does not support floating point numbers
� This work is partially supported by grants from the CPER Nord-Pas-de-Calais

TACT LOMC C21, the French Ministry of Education and Research (ACI Sécurité
Informatique SPOPS), and Gemplus Research Labs.

G. Barthe et al. (Eds.): CASSIS 2005, LNCS 3956, pp. 57–76, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

58 A. Courbot, G. Grimaud, and J.-J. Vandewalle

and features a firewall that restricts access to methods and data. Also, the APIs
of these editions define new packages and are thus not compatible with J2SE.

These incompatibilities and restrictions over the original Java environment
break the Java gold rule “compile once, run everywhere”. J2ME and Java Card
have been tailored in order to support a pre-defined range of applications. There-
fore, they are unable to run standard Java applications which requirements go
beyond their restrictions. For instance, J2ME CLDC doesn’t provide the JDBC
API, that offers a standard way to access databases. However, embedding a local
database or database client on a small device makes sense for some businesses;
but in order to provide Java derivatives that fit on a given range of embedded
devices, a choice has to be made as to which parts of the API are kept.

Obviously, embedding Java into small devices such as mobile phones or sen-
sors implies a degradation of the environment at some point. Anyway, even if the
whole J2SE environment would fit into an embedded device, it would still be de-
sirable to avoid embedding unused packages and features in order to save silicon
and production costs. Providing a pared-down version of Java for these devices
is therefore inevitable. But conversely to the J2ME and Java Card approaches,
we support the idea that the specialization of the Java environment should not
be imposed by a specification. Instead, it should be done on a per-case basis,
according to the applicative domain of the Java programs that will run on it.

This paper is about a new deployment scheme that allows J2SE-compliant
applications to be embedded into closed, constrained devices. To allow this,
the Java API of the system is tuned and reduced according to the applications
needs during an off-board deployment phase called romization. This phase offers
a complete view of the deployed system to the customization tools, which can
thus perform much more efficiently than classical library extraction tools.

The remainder of this paper is organized as follows: in section 2, we discuss
the deployment process and the specifics of Java applications deployment for em-
bedded devices. Section 3 describes romization, an off-board form of deployment
suitable for embedded devices, and section 4 presents our romization architec-
ture that allows the Java API to be tailored according to the applications that
are deployed. We discuss experimental results and compare with related work in
section 5, before concluding on our approach.

2 Deployment Schemes for Embedded Devices

Software deployment can take various forms and interpretations. This section
presents a simple yet comprehensive model of deployment that maps the Java
class loading process. We then observe the limitations of the Java class loading
scheme for small and constrained embedded devices, and consider the existing
solutions addressing this issue.

2.1 Application Deployment Model

The deployment process covers all the steps that bring a software component
from a state where it is ready to be loaded (usually a software package) to a

Romization: Early Deployment and Customization of Java Systems 59

Released Transferred Configured ActivatedDep. steps

Dep. tasks Installation Activation

Fig. 1. The software deployment time-line. Before being used, a software component
must go through installation and activation tasks. Note that the component starts
being useful at step Activated.

state where it is ready to run on a particular environment. This includes the
installation and configuration tasks, but also any kind of adaptation applied to
the software being installed.

An exhaustive definition of the deployment process can be found in [1]. For
the purpose of this paper, we only cover the deployment tasks that are needed
to bring a software component up to a runnable state.

As shows figure 1, a software component needs to successfully go through
several steps before being usable. After being Released (made available for in-
stallation by a software packager), a software component is Transferred into a
target system and Configured in order to operate within its new environment.
Put together, these two steps correspond to the Installation task. Finally, the
component becomes operational by being Activated (Activation task). We name
this state when a component is activated the Useful Initial State of the compo-
nent, because it is from this state that its installation is complete and it can be
used by the system without any other preparation.

The above-mentioned tasks have corresponding opposite operations: an acti-
vated component can be de-activated, then re-activated, and a component can
be removed from the system by being uninstalled. The software packager can
also choose to de-release the software by stopping its distribution and support.

This deployment model is mappable to the Java deployment scheme, which
consists in loading classes into a Java virtual machine.

2.2 Java Applications Deployment Scheme

Several full-fledged software components deployment schemes are available for
Java, like OSGi[2] or J2EE[3]. Because they all rely on the lower-level class
loading mechanism, we center our deployment study on it.

Java Class Loading. The class loading process is one of the core mechanisms
of Java. It can be seen as a classical software deployment solution that allows a
software package (a Java class) to be deployed into an operational system (the
Java virtual machine). We describe how the above-mentioned deployment tasks
map with the class loading stages.

The Java Virtual Machine Specification[4] states that between the released
.class file and the loaded and operational class, several distinct stages are
passed over:

At first, a class loader is told to create a new class from a binary representa-
tion (the .class format). The class is read from a binary container (usually a

60 A. Courbot, G. Grimaud, and J.-J. Vandewalle

file) and its internal representation in the JVM is created. This stage gives the
state LOADED to the class, and corresponds to the transfer of the class within
the virtual machine (Transferred step).

Then, the external references of the class are resolved during the linking stage.
Linking can trigger the loading of several other classes that are referenced. This
stage also verifies the bytecodes of every method for type-safety. The class is
given state LINKED once this operation is finished, a state that is equivalent to
the Configured step in our deployment model: the class is set up so that it can
be used by the virtual machine. It should be noted, that the external references
resolution can either be done once and for all during linking (early linking), or
be delayed to be performed just-in-time when the bytecode is executed (late
linking). Late linking can trigger the loading of classes during runtime, when
an unlinked reference is met by the bytecode interpreter. Early linking prevents
this, but at the cost of loading all the classes that are referenced in the code at
once, regardless of whether the interpreter will actually meet them or not. On
the contrary, late linking only loads the classes referenced if they are used at
runtime. Desktop Java implementations run on comfortable machines and have
all the necessary .class files at hand (either on disk, or from the network), so
they usually adopt late linking. Embedded Java environments dispose of limited
processing power, few storage space and intermittent (if any) network connec-
tions, and therefore tend to use early linking for their class loading model in
order to avoid having to load classes during runtime.

Finally, the class is initialized by interpreting its static statements (or class
initializer), which are mainly used to set the initial values of static variables. The
class is READY (Activated step in our deployment model) once this stage is com-
plete, and can be used thereafter. Contrary to loading and linking, the specifica-
tion imposes a precise time for initialization to occur: right before
the first active use of the class. The first active use is basically the first time
the bytecode interpreter meets a reference to the class, for instance via a static
method invocation or instance creation.

The figure 2 shows the mapping between the deployment and Java class
loading steps.

Released Transferred Configured ActivatedDep. steps

.class LOADED LINKED READYJava steps

Fig. 2. Java class loading steps mapped to their counterparts in our deployment model

It is only when the class loading is entirely done (i.e., when the class has
reached the state READY) that a class can actually be used by the virtual ma-
chine. Just as the Activated step for a component, the READY state corresponds
to the useful initial state of a Java class.

Java System Initialization Phase. Similar to a class, the whole Java virtual
machine follows a time-line, which begins at its invocation. The Java virtual

Romization: Early Deployment and Customization of Java Systems 61

Started Bootstrapped Useful initial stateBoot. steps

Boot. tasks Class loading

Fig. 3. The Java system time-line

machine first performs bootstrap activities to initialize itself. Then, in order to
execute a program, it creates a Java thread and loads the class that contains
the entry point of the program; typically, a static method named main. It is
only once the entry point class reaches state READY that the system can start
executing the main method and has reached its own useful initial state (figure 3).

We label the task performed before the virtual machine reaches its useful
initial state the system initialization task. This definition embraces all the ac-
tivities that are performed identically every time the virtual machine is invoked
with the same program, before the program is actually run.

The system initialization task (especially class loading) is a quite heavy
process, and can hardly (if at all) be performed by small and constrained de-
vices [5]. Such devices have to turn to alternate class loading schemes.

Alternative Java Class Loading Schemes. The Java class loading process
is so inadequate for embedded devices that research has been undertaken to
provide smaller, easier to load class formats or loading schemes. EJVM[6] uses a
client/server model to distribute the class loading burden and allow only useful
methods of a class to be loaded. Several pre-loaded class formats have also been
developed[7], and some have been made available on the market, like the .cap
format of Java Card[8] or JEFF[9]. They define an almost ready-to-run format
for sets of Java classes, where all the symbolic references are resolved and the
constant pools are merged. In Java 2, Micro Edition, classes needed during run-
time can also be pre-loaded into the virtual machine when the latter is being
compiled. Such a process is called romization.

All these class loading schemes distribute the class loading process so that
the hardest work has not to be performed in the target device. Romization in
particular brings some interesting opportunities to efficiently tailor the system,
that pre-loaded class formats cannot bring, as we will see in next section.

3 The Romization Process

Although widely used by the embedded devices industry, romization has evoked
few interest from the scientific community so far. To our knowledge, no publica-
tion ever studied in depth or formalized romization. In this section, we define the
general principles of romization and analyze the limitations of existing romiza-
tion techniques.

3.1 Principles of Romization

Romization is the process by which a software system is pre-deployed by a spe-
cific tool (the romizer), running on a deployment host, for a target device. The

62 A. Courbot, G. Grimaud, and J.-J. Vandewalle

Romizer

Java Virtual
Machine

Java Classes

Extended
JVM

Device

Fig. 4. The romization process applied to a Java virtual machine

inputs of romization are the bare system and a set of components to pre-deploy
on it. From them, the romizer creates a memory image suitable for the tar-
get device that contains the system with the components already deployed on
it. Romization can therefore be qualified an “in-vitro” form of deployment: the
software is not deployed on its actual target, but rather inside a “test tube”,
before being transferred already-deployed to its runtime device.

Figure 4 illustrates the romization process applied to Java: the system is the
embedded Java virtual machine, the components to deploy are the Java classes,
and the resulting output is a virtual machine for which all the given classes are
already loaded. This extended virtual machine can thereafter be transferred to
the target device for being run.

The memory image produced by the romizer is completely ready-to-run and
mappable to the physical memory of the device. It is intended to be placed
in Read-Only Memory, hence the name ROMization, although other memories
can be used. In the embedded devices industry, romization is used in order to
instantiate the initial program of a device, that is invoked by the boot loader.
The initial state of the system on the target device is the state of the system
when it is dumped by the romizer (figure 5).

Ideally, the initial state on the device is as close as possible to the useful
initial state. That way, the system is immediately active and useful when the
device is powered on.

For Java systems, romization is mainly used to relieve the target device from
loading the applications and system classes: as we said, this phase requires a
lot of resources to be performed on a constrained device. Moreover, the class
loading would unnecessarily be identically repeated every time the device is

Started Bootstrapped Useful initial stateBoot. steps

Distribution Done by the romizer Done on the device

Initial state of the system on the device

Fig. 5. Example distribution of the Java system initialization between the romizer and
the target device. The romization process let the system be started on a deployment
host before being transferred to the target device.

Romization: Early Deployment and Customization of Java Systems 63

powered on, increasing startup times. Today’s existing romization solutions for
Java are designed to address this issue.

3.2 Available Romization Solutions

All the romization solutions studied hereafter are industry responses to the need
of deploying Java applications on small and limited devices. They aim at pre-
venting the embedded device to load the classes, by providing them already
loaded within the embedded virtual machine.

Java 2 Micro Edition (J2ME). J2ME[10] is a configurable derivative of Java
targeted at embedded devices with at least 128KB of memory. It features the
Kilobyte Virtual Machine (KVM), a low-footprint Java virtual machine.

J2ME is divided into several configurations that reflect the differences be-
tween ranges of constrained devices. The Connected Device Configuration (CDC)
is designed towards strong PDAs and set-box boxes, while the Connected Limited
Device Configuration (CLDC) is more adapted for devices like mobile phones.
The CLDC API is a strict subset of CDC API, which is itself a (non-strict) subset
of the J2SE API. In addition to API restrictions, CLDC also limits the virtual
machine capabilities by removing support for reflection, objects finalization and
by limiting error handling.

J2ME also provides a romization tool called JavaCodeCompact (JCC), that
is capable of pre-loading classes against the KVM so that they are immediately
available upon invocation. JCC performs the loading and linking operations of
the classes (figure 6). The classes initializers still have to be executed on the
target system in order to finalize class loading, and there is no way to request
the execution of code during romization.

As output, JCC produces a C file representing the loaded and linked form
of the classes for the KVM. This file is thereafter compiled and linked with the
KVM binary.

.class LOADED LINKED READYJava steps

JCC covering

Fig. 6. The class loading activities covered by JCC

Java Card. As the tiniest flavor of the Java technology, Java Card[11] is tar-
geted towards devices so limited that they cannot even support the lightest
configuration of J2ME. As its name suggests, it is primarily designed towards
smart cards. Although based on Java by concept, Java Card only gives a slight
taste of it. The restrictions on the virtual machine are very drastic (optional 32-
bits integers, no automatic memory collection, multithreading, 64-bits or floating
point operands), and the high safety needs of smart cards applications led to the
addition of new security mechanisms such as the firewall. The system API, which

64 A. Courbot, G. Grimaud, and J.-J. Vandewalle

need to exploit the resources of these tiny devices with poor communication ca-
pabilities, has also very few in common with J2SE. Nonetheless, Java Card met
success in the smart card industry thanks to its high safety, portability and ease
of programming when compared to past smart card development toolkits.

The deployment of classes into a Java Card requires an additional step to
be performed outside the device: the classes are pre-loaded into a .cap file in a
nearly ready-to-run, yet portable across Java Cards, representation of the classes.
This chewed-up form is then given to the device which has little more to do than
verbatim-copying the class data to memory. For this reason, it is quite easy to
produce a Java Card virtual machine with classes already romized in it.

The .cap file format contains classes that are in state READY : The class
initializers are evaluated by the .cap production tool, and static variables are
initialized on the card after a data array. However, and because of this, the
static initializers in Java Card are limited to (arrays of) primitive compile-time
constant values. One cannot, for instance, create new objects using the class
initializers, which strongly limits the pre-deployment possibilities.

3.3 Evaluation of Existing Romization Solutions

Both J2ME and Java Card are good answers to the romization problem for
their respective range of devices, as their commercial success witness. However,
they are not going far in the deployment process regarding our definition of
romization.

In section 2, we defined the state where the system actually start to run
applications as the useful initial state. Our definition of romization in section
3.1 then states that the purpose of romization is to approach this state as much
as possible outside the target device, so that the latter doesn’t suffer from the
cost of deployment. J2ME and Java Card approach the useful initial state by
pre-loading classes against the virtual machine. The motivations behind this
are to avoid embedding the heavy class loading mechanism if not necessary, to
reduce the virtual machine startup time, and to avert the need of having a copy
of the classes available (either locally or from a network).

However, by limiting their romization capabilities to these sole points, J2ME
and Java Card are unable to do complete software pre-deployment. The de-
ployment cost is indeed reduced by the class pre-loading, but nothing is done
regarding higher-level components initialization or activation. For instance, it is
possible to pre-load the classes of an OSGi component during romization, but
not install or activate it in the OSGi sense. Moreover, class loading is not even
completely covered by JCC, which leaves the classes initialization to the tar-
get device, and by Java Card, which considerably limits the class initialization
capabilities. In the end, and although the most costly part of the deployment
is done by the romizer, a non-neglectable part of the system and applications
deployment must still be performed on the target device (figure 7).

This incomplete system initialization during romization has more conse-
quences on the final system than the minor annoyance of a longer startup time.
Indeed, it is common to apply customizations to the system being deployed

Romization: Early Deployment and Customization of Java Systems 65

Started Bootstrapped Useful initial stateBoot. steps

Boot. tasks Class loading
Distribution JCC covering

Initial state of the system on the device
Initialization tasks done on the device

Fig. 7. The part of the Java system initialization covered by JCC. JCC only covers
class loading partially, and leaves a consequent part of the initialization task to the
target device.

during romization: JCC for instance can be given a list of the classes, meth-
ods and fields to romize. Elements not mentioned in this list are omitted in
the system memory image. This selection allows the romized system to keep a
reasonable memory footprint by not including useless elements of the system.

Let’s consider that we want to romize the classical HelloWorld program, that
uses the standard output stream (System.out) to display a constant string. The
System class contains the standard output stream, but also refers to several other
kinds of streams through System.in and System.err, to the system Properties
and SecurityManager, and so on. Since the romizer works with early linking,
all these references are recursively loaded when the romizer loads the System
class. This means that for a single “Hello, World” displayed on the screen, one
would need to load dozens of classes that are not used at runtime and occupy
many kilobytes of precious memory. With JCC, the system producer can decide
by hand to limit the romization of the class System to the static field out,
disregarding useless references to other classes, fields and methods.

Determining which parts of the system and applications classes are needed
can be done using a call-graph resolution algorithm[12], run from the entry points
of the system. Many library-extraction tools[13, 14] use this technique to extract
a minimal subset of a library, that will behave identically with respect to the
original library for a given set of applications. Call graph analyzes are used to
explore all the possible paths of a program and mark the classes, methods and
fields that are likely to be accessed by it. A call graph analysis requires the
knowledge of the program entry points, and give better results if it is provided
static information about the system. For instance, knowing the initial values of
some variables can help removing paths in the call graph, and thus keeping less
elements. The romizer looks like a good place to perform call graph analyzes,
because it has a complete view of the system being deployed: if the romizer were
capable of going as far in the system initialization as creating the applications
threads, it would know the entry points necessary to compute the call graphs. If
it could initialize the classes and deployed software components, it would dispose
of static information useful for further paths elimination and code simplification.
Moreover, in addition to providing a great context for call graph analyzes, the
romizer would also be the direct beneficiary of their results.

66 A. Courbot, G. Grimaud, and J.-J. Vandewalle

We can see that there is a great promise of system customizability for a
romization scheme capable of handling deployment in a more complete manner.
The next sections describes and evaluate a romization framework proposal that
targets this purpose.

4 A New Romization Scheme

As we have seen, the romization solutions presented in the previous section limit
their activities to part of class loading. By contrast, in order to increase the
customization potential of the system, we need a solution that can not only
handle the class loading completely, but also any software component layer that
could be used on top of it. This way, the deployment could be covered in a more
complete manner by the romizer, and the useful initial state of the system could
effectively be approached off-board. Doing so would not only reduce the startup
time, but more importantly would open the way to efficient call graph analyzes
that allow to remove unused parts of the system and greatly reduce the final
memory footprint.

4.1 System Initialization Task Distribution

The romization solutions studied earlier were simple class pre-loaders, that only
perform a small part of the system initialization. In order to cover a larger range
of initialization activities, a romizer has to include more features according to
the additional operations it needs to support.

The following is a list of all the initialization tasks performed in order to reach
the useful initial state of the system, and an evaluation of their applicability
within a romizer:

Initializing the hardware: Since the romizer has no access to the hardware
of the target device, it cannot perform this very first step. Anyway, the
hardware loses its state when the device is switched off, so this operation
needs to be done every time the device is powered on.

Bootstrapping the system: This operation consists in initializing the virtual
machine internals in order to make it usable: for instance, setting up the
heap or the bytecode interpreter. If the romizer can determine the suitable
post-bootstrap system state, it can dump a binary image with these values
already set up. Some system initializations may rely on the execution of Java
code, especially if deep parts of the system are programmed in Java. In this
case, the romizer must include a bytecode interpreter to execute them.

Loading, linking and initializing classes: This part is the only one covered
by existing romization tools like JCC. However, without a bytecode inter-
preter, the classes cannot be initialized (which would involve executing the
class initializers). Also, the class loading mechanism is often just a layer
above which a real software component framework like OSGi relies. In this
case, the components deployment is only partially covered by the romizer
unless an execution environment is provided to cover the registration and
activation of the software components.

Romization: Early Deployment and Customization of Java Systems 67

Creating the threads: Once the classes of the applications are loaded, their
threads can be created. The only requirements are properly initialized classes
and objects creation capabilities from the romizer, so that a thread object
can be created. This step is crucial for further system customizations: With
the applications threads at its disposal, the romizer can infer information
about the system that are useful for a customizer, like the call graph.

Running the threads: The Java threads might need to run until a given point
before the useful initial state is reached. A common situation is a system for
which the entry point is an OSGi implementation, which needs to be run
in order to deploy the applications bundles. Executing the threads requires
a full-fledged system to be performed safely: the romizer must have imple-
mentations for the native methods, and must be capable of running the Java
code as if it was the target device itself.

In order to completely deploy the Java applications, the romizer thus needs
to be able to perform runtime operations like executing bytecode or creating
objects. A romization architecture covering the deployment activities we listed
must therefore be based on a complete virtual execution environment.

4.2 General Architecture

We divide our romization architecture into three main parts that interact with
each other (Figure 8). The Environment is a virtual execution environment
(VEE), in which the system to romize is prepared. The Dumper takes the Java
objects pool of the Environment as input and, as its name states, dumps them
into a representation that is suitable to be used with the runtime environment.
Finally, the Builder receives the output of the Dumper and creates the final
system by assembling it with the runtime environment.

The Environment: A virtual execution environment that appears like a real
Java runtime environment to the applications. It includes a class loader, a
memory manager and a bytecode interpreter. The Environment allows the
user to deploy and execute the system up to the point considered to be the
“useful initial state”. It also provides means to introspect the objects graph
and to modify the objects of the system.

The Dumper: Its purpose is to create a memory representation of the objects
contained in the Environment, correctly mapped with the physical mem-
ory of the target device. The Dumper must know about the device memory
mapping (quantity, location, access means and properties of the different
memories). It parses every object of the Environment and decides a desti-
nation memory for each of them according to placement policies. Then, it
dumps a representation of the different memory sections and their objects
that is passed to the builder for being linked with the runtime support layer
of the target device.

The Builder: The Builder coordinates the actions of the two other romization
parts with the building tools like the compiler to produce the memory image
of the deployed system. It controls how the system is built according to the

68 A. Courbot, G. Grimaud, and J.-J. Vandewalle

Builder

Compilation toolchain

Support layer
customizer

Customized
JVM

Memory
image

Environment

Virtual
Machine

System
customizer

Objects
pool

Dumper

Memory
placement

Object
format

Object
dumping

Java classes

JVM
Customized

system

System properties

Fig. 8. The proposed romization architecture

target device: which compiler to invoke, with which options, which set of
native methods to use, and so on. It also decides the parts of the runtime
support layer to include and how to tune them according to system properties
provided by the environment. For instance, if the environment asserts that
the code it contains never allocates a single object during runtime, it is
useless to include a memory manager in the generated system. The embedded
bytecode interpreter can also be tuned in order not to support bytecodes that
are absent in the code.

In a typical scenario, a user who wants to create a memory image of an
embedded Java system that runs the HelloWorld OSGi bundle will proceed
as follows: First of all, the building profile and memory mapping of the target
device are given to the Builder and the Dumper. Then, the user asks the Envi-
ronment to run the OSGi framework, by invoking the former with the latter as
parameter, as with a regular Java runtime environment. The OSGi framework
starts running into the Environment: the bundle can be loaded and initialized
using the interaction means provided by the OSGi framework. The user then
sets a “breakpoint” (similar to a debugger breakpoint) on the main method of
the bundle (which marks the useful initial state of the bundle) and asks OSGi
to activate the bundle. This action requests the execution of the main method,
and causes the environment to freeze when meeting the breakpoint: the system

Romization: Early Deployment and Customization of Java Systems 69

has reached the state desired to be the initial state on the device. At this point,
the bundle is totally deployed and the OSGi deployment facilities are no more
used.

When the Environment has reached the initial state that the user wants for
the target device, it can be dumped. But prior to doing so, it is opportune to take
advantage of all the static informations that are provided by the fully-deployed
system to customize it. The customization opportunities and their effects are
described in detail in section 4.3. They affect the Environment by suppressing
its useless parts, and by transforming some objects (for instance, objects for
which an unused field can be removed, or methods that have been specialized to
their calling context). The customized system also provides information to the
Builder, like which classes are to be eventually included in the memory image,
or which bytecodes are used (for tuning the embedded bytecode interpreter).

This final Environment state is given to the Dumper which, using the mem-
ory layout provided earlier and its memory placement policies, creates the mem-
ory image of the Environment objects, correctly spread between the different
memories of the target device. It is then up to the Builder to tune the hard-
ware support layer according to the Environment properties, and to compile
the necessary part of the support layer along with the memory image given by
the Dumper. The result of the compilation process is the ready-to-run mem-
ory image of the embedded system, at the state it had when the Environment
was given to the Dumper. This memory image is finally burnt on the physical
memory of the target device. When powered on, the target device immediately
executes the main method of the HelloWorld bundle that has been deployed, as
it simply continues the execution of the system from its final state within the
Environment.

It should be noted that not all system states are safely dumpable. Typically, it
has no purpose to dump states that contain non-serializable objects like opened
network sockets or file descriptors.

The next subsection looks at the customization opportunities before the ob-
jects are passed to the dumper.

4.3 Customization Opportunities

As stated in the previous subsection and on figure 8, there are two kinds of
customizations that can be performed on the romized system:

1. The customization of the Environment, done by tailoring or suppressing
some of its objects,

2. The runtime virtual machine customization, done by the Builder, that se-
lects and tailors the parts of the support layer to keep according to the
Environment properties.

They are to be performed in the given order, since tailoring the Environment
might influence on how the runtime virtual machine is to be customized. The
customization of the virtual machine is planned for future work, we are concen-
trating in the present article on the customizations applied to the Environment.

70 A. Courbot, G. Grimaud, and J.-J. Vandewalle

Customization of the Environment occurs right before its objects are given
to the Dumper: when the frozen system has reached its initial state on the de-
vice. The customizer figures out a transformation of the Environment that will
perform the further execution of the system identically with respect to the orig-
inal Environment, but is optimized for size and performance. The customization
process starts by a call graph analysis from the current threads states to mark all
the possible paths the embedded bytecode interpreter could go through. The ad-
vanced deployment state of the system helps removing unreachable paths: first,
the call graph runs on live stacks, which contain objects of known type and known
value. This allows, for instance, to resolve virtual methods invocations[15, 16].
Moreover, at the time the system is running, we have many instantiated sta-
tic objects that won’t change during the program execution, which allows their
values to be inlined.

The call graph obtained also gives information about which classes, meth-
ods and fields are potentially needed by the program. All the fields, methods
and classes not referenced in this call graph can safely be removed from the
Environment, unless they are to be called later by dynamically loaded classes
(in this case, the call graph can be completed with a list of “potential” entry
points). The call graph can actually tell much more than just which objects are
reached by the program flow: it can also provide additional information about
the objects, like whether they may be written or not. Such information is useful
for the placement manager of the Dumper to determine the destination memory
of objects (objects that are never written can safely be placed in Read-Only
Memory).

A second customization pass is then run on the remaining objects, in order
to tailor them for their runtime usage. The most frequently concerned objects
are Java methods, which can be simplified using partial evaluation with the sta-
tic information of the Environment. For our HelloWorld example, the method
println is only called from one context, with a static argument: it can therefore
be specialized for this unique usage, and the string argument can be removed.
Following the same principle, variables can be replaced by constants where ap-
plicable, conditionals on known values can be removed, virtual methods call can
be turned into static ones, and so on.

Finally, decisions may be taken as to how the objects are to be outputted
by the Dumper. Java methods which are found out to be critical (either by the
code analyzer or the user) can be compiled into native code by an ahead-of-time
compiler for maximum efficiency, at the cost of a larger memory footprint. The
compiler can take advantage of all the static informations gathered during the
call graph analysis to optimize the code, like omitting runtime exceptions checks
for proven sites.

All these customizations affect the deployed Environment and aim at pro-
ducing the most compact memory image of the Java system tailored for the
applications that are (or are to be) deployed on it. The efficiency of applying
these customizations at activation time is evaluated in the next section.

Romization: Early Deployment and Customization of Java Systems 71

5 Experimental Results

Our romization architecture has been implemented into the Java In The Small
(JITS[17]) platform. This section evaluates our approach by measuring the mem-
ory footprint of the image generated by the Dumper (including all the Java
objects of the system, loaded classes, methods, etc.) at different stages of the
deployment process.

5.1 Methodology

The memory footprint generated by JITS has been evaluated on three bench-
marks. The HelloWorld benchmark is the typical example of a minimal program
which final memory footprint should be very low. AllRichards is a much bigger
benchmark (78 classes) that simulates 7 different implementations of an operating
system kernel task dispatcher. Finally, Dhrystone is a small benchmark made of
a few classes, mainly used for integer performance evaluation. Its interest for our
measurements resides in its memory allocations within the class initializers.

The customizations implemented in the Environment customizer are the re-
moval of unreferenced objects, classes, fields or methods, and the modification
of the classes structure to suppress entries for unused fields and methods. The
call graph computer implements constant propagation and static class hierarchy
analysis[18] in order to detect inapplicable paths. It also marks all the objects
likely to be accessed during runtime.

The measurements are performed as follows: for each benchmark, the main
class is loaded into the Environment. The class loader then resolves and loads all
the necessary dependencies. After this, the system is brought up to the desired
state, and dumped into a C file containing the definition of all its Java objects.
This C file is thereafter compiled using GCC 3.4.3 for the i386 platform with
optimization level 2, and stripped. The final measurement is the size of the
stripped object file.

We compare our measurements obtained using JITS with the equivalent
memory image generated by running JCC on the CLDC configuration of J2ME,
version 1.1, including the standard CLDC API as well as the benchmark classes.
The C file generated by JCC is compiled and evaluated using the same protocol.

The measurements performed on JITS cover, for each benchmark, the size
of the memory image generated by the Dumper at the following stages of the
system deployment:

Transferred. All the classes have state LOADED,
Configured. All the classes have state LINKED,
Activated. All the classes have state READY, and the benchmark thread is

created (but not started). This stage is considered to be the useful initial
state of the system for these benchmarks.

5.2 Results

Table 1 shows the sizes of the memory images generated by JITS at the different
deployment stages, as well as the equivalent images generated by JCC.

72 A. Courbot, G. Grimaud, and J.-J. Vandewalle

Table 1. Sizes (in Kbytes) of the memory images generated by JITS and J2ME CLDC

Benchmark JITS
Transferred Configured Activated

HelloWorld 307 242 11
AllRichards 410 321 70
Dhrystone 314 248 86

The column labelled Transferred shows the size of the system when all the
classes necessary for the benchmark are in state LOADED. The size of all the
bare .class files necessary for the benchmarks to load and run is of 636 Kbytes
for HelloWorld, 1014 Kbytes for AllRichards and 664 Kbytes for Dhrystone.
We can see that the loaded form of the classes is much lighter than the original
.class files, mainly because many constant pool entries containing symbolic
references can be discarded at that point, depending on the class loading mech-
anism used[19]. However, at this stage no static information is available that
would allow the customizer to suppress objects.

Linking the classes together brings the system to state Configured. This stage
leaves more constant pool entries unreferenced (those whose sole purpose is to
give the symbolic name of references), which can be suppressed. Another bene-
ficial side-effect of this state is that more system objects reach their final state.
This stage, which is the stage at which JCC dumps the classes it loaded, gives
us memory images of 242 Kbytes for HelloWorld, 321 Kbytes for AllRichards
and 248 Kbytes for Dhrystone.

The Activated column gives the size of the memory dump obtained when
going further in the deployment process: the classes initializers are executed
by the Environment, and the applications threads are created. This allows the
customizer to compute the call graph, remove useless objects, and tailor the
Environment. The final size obtained for HelloWorld is 11 Kbytes: the minimal-
ist semantics of the program leads to a system of minimal size. AllRichards
displays a size of 70 Kbytes, of which 58 Kbytes are made of its many classes
and methods. Since all the code of this huge program is executed at runtime,
it is romized entirely; however, we found out that the amount of system classes
kept in the memory image is almost as low as for the HelloWorld benchmark.
Dhrystone’s final 86 Kbytes may seem surprising when considering that its mem-
ory footprint for the others deployment stages is very similar to HelloWorld’s.
They are however understandable regarding the class initializers: this bench-
mark, amongst other smaller allocations, allocates an array of 65 Kbytes in its
class initializers. If we disregard this dynamically allocated data, we find a size of
14 Kbytes for all the others objects of the system. Would the system have been
romized earlier, this memory would anyway have been allocated by the device.

These results are very supportive to our initial claim: going further in the
deployment process during the romization of the system provides all the infor-
mation needed to tailor it efficiently. In particular, the customization process
allowed us to get rid of the useless references in the J2SE API, and to obtain
the fitting derivative of it for the benchmark being deployed.

Romization: Early Deployment and Customization of Java Systems 73

200

175

150

125

100

75

50

25

0
Hel. Ric. Dhr.

JITS Activated

Hel. Ric. Dhr.

J2ME CLDC

Fig. 9. Comparing the system size of JITS at state Activated with its J2ME CLDC
counterpart

The graph of figure 9 compares the footprint of the memory images gener-
ated by JITS at state Activated against their J2ME CLDC counterparts. JITS
generates closed memory images that are up to 90% smaller than their open
J2ME equivalent: this is explained by the customization phase which tailors the
API and benchmark code in order to extract and customize a minimal subset of
it. The remaining Java API is finely adapted to the runtime needs, and therefore
better-suited than the static J2ME API. It should be noted, that since J2ME
doesn’t initialize the romized classes, the memory allocated dynamically in the
class initializers is not included in the dumped image. This detail is significant for
the Dhrystone benchmark, so we represented this amount of memory, which is
allocated on the target device, by the dashed part of its graph bar. We thus gain
about 90 KBytes on J2ME for the AllRichards and Dhrystone benchmarks,
while the J2ME systems retain the possibility to load classes.

Comparing our results at stage Configured against JCC is also interesting,
because at this stage the classes have equivalent states on both systems. J2ME
get better results, which is explained by several factors. First, JITS has many core
parts of the system written in Java, which are therefore included in the memory
image. For instance, the system class loader of JITS is written in Java, whereas
the J2ME one is written in C and is therefore not counted in our measurements.
The main reason, however, is that the system deployed by JITS uses the J2SE
API, which has much more classes than J2ME and much more links between
them. On the HelloWorld benchmark, JCC romized 99 classes, while loading
and linking the HelloWorld class in JITS resulted in loading 142 classes. The
customization phase, that frees the J2SE API from all the useless elements,
can not be performed efficiently at this stage. Therefore, at this point of the
deployment process, or for systems that need to remain open, using light APIs
like J2ME is justified and indeed more efficient - besides, they have been specified
to address these precise issues.

It is also pertinent to compare our results with classical library extractors.
In[13], Rayside et al. obtained an extracted library size of 328 Kbytes for the Hel-
loWorld program, using the J2SE API. While the entity measured (the unloaded

74 A. Courbot, G. Grimaud, and J.-J. Vandewalle

bytecode) is not directly comparable with our results, the subset still compre-
hends 122 classes and one can predict that the loaded extracted library will still
occupy between one or two hundreds of kilobytes in memory once loaded into
the virtual machine. The library extractor operates on a non-deployed system
and therefore has few clues about the possible runtime behavior of the system.
On the opposite, the JITS customizer operates on a deployed system and knows
all the types and values of entry points parameters (which are on the stack), as
well as many static objects.

The conclusion of our experiments is that the more the system is deployed
within the romizer, the more it can be tailored for its runtime needs. In par-
ticular, if the applications threads are available, the romizer is able to use this
information to extract and customize the fitting subset of the system APIs that
is necessary for runtime: in our experiments, the customization phase always
leaded to a final memory image that is much lighter than its J2ME counterpart,
while the romizer worked on the whole J2SE API. Contrary to J2ME, which re-
stricts the system API right from its specification, our approach holds the API
specialization until the deployment of the system, resulting in an per-case cus-
tomization that is more adapted, and only comprehends the features useful for
runtime. However, our approach forbids loading classes on a customized system
that have not been evaluated (and therefore known) at the time of customization.

Our experiments also confirmed that, if the system is only partially deployed
during romization, a dedicated API like J2ME clearly outperforms the J2SE API
in terms of memory image footprint.

6 Conclusion

We presented a romization architecture capable of generating very small mem-
ory images of closed Java systems for applications written using J2SE. Exper-
iments show that going further in the system deployment within the romizer
allows the latter to perform very precise analyzes on the deployed Java sys-
tem. These analyzes can then be used by a customizer to extract a custom-
tailored subset of the large J2SE API for the applications being deployed. The
resulting system is therefore broadly adapted to its runtime needs and shows a
much smaller memory footprint than the equivalent system obtained with static
solutions like J2ME, while preserving full J2SE compatibility for applications
development.

Contrary to solutions like J2ME or Java Card, our architecture makes no
initial assumption about the kind of applications that it will run, or the kind
of device that will be used. Therefore, it imposes no upper-limit to the system
capabilities: the generated system is the smallest possible Java subset that allows
the deployed applications to run on the given device.

We see many perspectives from this work. They include the implementation
of more customization tools (particularly code specializers), in order to study
how they behave in the favorable romization environment. Another short-term
study point is the efficient customization of the embedded Java virtual machine

Romization: Early Deployment and Customization of Java Systems 75

the romized applications are linked with. The system informations brought by
the romizer could also probably be used in order to improve the results of other
algorithms, like Worst Case Execution Time computation. Finally, an open prob-
lem is the extensibility of our solution. Our current implementation gives very
small closed systems, yet it may be desirable to extend them.

Acknowledgments

The authors would like to thank Dorina Ghindici, who implemented the call
graph analysis that allowed us to run our experiments.

References

1. A. Carzaniga, A. Fuggetta, R. S. Hall, A. van der Hoek, D. Heimbigner, and A. L.
Wolf., “A characterization framework for software deployment technologies,” Tech.
Rep. CU-CS-857-98, Dept. of Computer Science, University of Colorado, April
1998.

2. OSGi Alliance, OSGi Service Platform, Release 3. IOS Press, Inc., 2003.
3. R. Searls, Java 2 Enterprise Edition Deployment API Specification, Version 1.1,

August 2002.
4. T. Lindholm and F. Yellin, Java Virtual Machine Specification. Addison-Wesley

Longman Publishing Co., Inc., 1999.
5. D. Mulchandani, “Java for embedded systems,” Internet Computing, IEEE, vol. 2,

no. 3, pp. 30 – 39, 1998.
6. D.-W. Chang and R.-C. Chang, “Ejvm: an economic java run-time environment

for embedded devices,” Software Practice & Experience, vol. 31, no. 2, pp. 129–146,
2001.

7. D. Rayside, E. Mamas, and E. Hons, “Compact java binaries for embedded sys-
tems,” in Proceedings of the 1999 conference of the Centre for Advanced Studies
on Collaborative research, p. 9, IBM Press, 1999.

8. Z. Chen, Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Addison-Wesley Longman Publishing Co., Inc., 2000.

9. The J-Consortium, JEFF Draft Specification, March 2002.
10. Sun Microsystems, J2ME Building Blocks for Mobile Devices, 2000.
11. The Java Card Virtual Machine Specification, 2003.
12. D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph construction in

object-oriented languages,” in OOPSLA ’97: Proceedings of the 12th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and appli-
cations, (New York, NY, USA), pp. 108–124, ACM Press, 1997.

13. D. Rayside and K. Kontogiannis, “Extracting java library subsets for deployment
on embedded systems,” Sci. Comput. Program., vol. 45, no. 2-3, pp. 245–270, 2002.

14. F. Tip, P. F. Sweeney, and C. Laffra, “Extracting library-based java applications,”
Commun. ACM, vol. 46, no. 8, pp. 35–40, 2003.

15. A. Diwan, K. S. McKinley, and J. E. B. Moss, “Using types to analyze and opti-
mize object-oriented programs,” ACM Trans. Program. Lang. Syst., vol. 23, no. 1,
pp. 30–72, 2001.

76 A. Courbot, G. Grimaud, and J.-J. Vandewalle

16. V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,
and C. Godin, “Practical virtual method call resolution for java,” in OOPSLA ’00:
Proceedings of the 15th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, (New York, NY, USA), pp. 264–280,
ACM Press, 2000.

17. “Java In The Small.” http://www.lifl.fr/RD2P/JITS/.
18. J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented programs

using static class hierarchy analysis,” in ECOOP ’95: Proceedings of the 9th Eu-
ropean Conference on Object-Oriented Programming, (London, UK), pp. 77–101,
Springer-Verlag, 1995.

19. C. Rippert, A. Courbot, and G. Grimaud, “A low-footprint class loading mecha-
nism for embedded java virtual machines,” in 3rd ACM International Conference
on the Principles and Practice of Programming in Java, (Las Vegas (USA)), 2004.

Typed Compilation Against Non-manifest Base Classes

Christopher League1 and Stefan Monnier2

1 Long Island University
christopher.league@liu.edu

2 Université de Montréal
monnier@iro.umontreal.ca

Abstract. Much recent work on proof-carrying code aims to build certifying
compilers for single-inheritance object-oriented languages, such as Java or C#.
Some modern object-oriented languages support compiling a derived class with-
out complete information about its base class. This strategy—though necessary
for supporting features such as mixins, traits, and first-class classes—is not well-
supported by existing typed intermediate languages. We present a low-level IL
with a type system based on the Calculus of Inductive Constructions. It is an
appropriate target for efficient, type-preserving compilation of various forms of
inheritance, even when the base class is unknown at compile time. Languages
(such as Java) that do not require such flexibility are not penalized at run time.

1 Motivation

In most object-oriented languages, programmers factor their solutions over a hierarchy
of classes. Since the classes in a hierarchy may appear in different compilation units,
one question that the language designer (or implementer) must address is: how much
information about a base class is needed to compile its derived class?

With its emphasis on efficient object layout and method dispatch, C++ requires com-
plete information about the base class: the number, locations, and types of all its fields
and methods. Indeed, it is because C++ depends on this information that a seemingly
minor change to a base class triggers recompilation of all its descendents. Java is some-
what more flexible. To support binary compatibility, its class files are not committed
to a particular object layout. A derived class depends only on the names and types of
the base class fields and methods that it uses. Nevertheless, most Java implementations
ultimately compile classes to lower-level code using the same layouts and techniques
as C++.

A few modern object-oriented languages allow classes as module parameters (Moby
[19], OCaml [31]) or as first-class values (Loom [4]). Other languages support more
flexible forms of inheritance, such as mixins [27, 3] and traits [32]. If a base class is
not available for inspection when a derived class is compiled, we say the base class is
not manifest. Implementations of these languages use a dictionary data structure to map
method and field names to their locations in the object layout. The dictionary may be
applied at link time or at run time, as required by the language.

Here is a simple example in OCaml (although it could be expressed just as easily in
Moby). We declare a signature for modules containing a circle class that implements

G. Barthe et al. (Eds.): CASSIS 2005, LNCS 3956, pp. 77–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

78 C. League and S. Monnier

three methods:center,radius, and area. The abstract typespec permits different
implementations of this signature to have different constructor arguments.

module type CIRCLE =
sig type spec

class circle : spec -> object
method center : float*float
method radius : float
method area : float

end
end

Below, CircleBBox declares a class bbox that inherits from a (non-manifest) base
class circle, overrides the area method (using a super call), and defines a new
method bounds.

module CircleBBox = functor (C : CIRCLE) -> struct
class bbox arg = object (self)

inherit C.circle arg as super
method area = super#area * 4.0 / pi (* area of bbox *)
method bounds = let (x,y) = self#center in

let r = self#radius in ((x-r,y-r), (x+r,y+r))
end

end

To compile this functor, we must make do with relatively little information about the
super class. We know it has the three methods specified in the signature, but not their
positions nor whether there are other (hidden) methods, nor even the size of objects. We
will return to this example throughout the paper.

Designing an effective intermediate language (IL) for compilers of these languages
is challenging. Although method invocation is atomic at the source level, the IL should
explicitly represent the dictionary search, method dereference, and (indirect) function
call as separate operations. This way the operations may be independently optimized:
combined, inlined, eliminated, or hoisted out of loops. To support such optimizations,
Fisher, Reppy, and Riecke designed Links, a calculus for compiling and linking classes,
based on the untyped λ -calculus. Its primitives can be combined “to express a wide
range of class-based object-oriented features, such as class construction and various
forms of method dispatch.” [20]

In recent years, many researchers have based intermediate languages on typed λ -
calculi. In addition to supporting type-directed optimizations, typed ILs are suitable
for generating certified object code, such as typed assembly language [28] or proof-
carrying code [29, 1]. Colby et al. [11] and League et al. [25, 26] have developed
certifying compilers for Java, but more advanced class mechanisms are not yet well
supported in this arena.

This paper presents a new intermediate language based on Links, but with a sound
and decidable type system. We adopt the ‘certified binaries’ framework of Shao et al.
[33], in which the types and proofs that govern computations are defined within the

Typed Compilation Against Non-manifest Base Classes 79

Calculus of Inductive Constructions [13, 14]. Our language has the same primitive op-
erators as Links, so it is an appropriate target for efficient, type-preserving compilation
of various forms of inheritance, even when the base class is unknown at compile time.

In the next section, we review the primitives of Links and explain an untyped trans-
lation of our running example. Section 3 introduces the framework of our type language,
and develops the semantics of LITL, our computation language. We revisit the exam-
ple, now in a typed setting, in section 4. Section 5 explores techniques for extending the
encoding to mixins and traits, and a discussion of related work appears in section 6.

2 A Review of Links

This section is a summary of the untyped Links representation by Fisher et al. [20].
The syntax of expressions appears in Fig. 1. Apart from the variables (x), abstractions
(λ x.e), and applications (e e′) inherited from the untyped λ -calculus, there are three
new features: tuples 〈e1, ...,en〉, dictionaries {l1 =e1, ..., ln =en}, and natural numbers.

Tuples are indexed by natural numbers (e@ i). They also support functional update
and extension. The expression e@ i← e′ produces a new tuple just like e, but with
the value at offset i replaced by e′. The expression e;〈e1, ...,en〉 produces a new tuple
containing all the values in tuple e followed by the values e1 through en. Functional
update will be used to implement overriding, while extension is helpful for inheritance.

Dictionaries map labels l to values. The expression e# l fetches the value corre-
sponding to label l in dictionary e; this is a more expensive operation than fetching a
value from a given offset in a tuple.

For the purpose of representing offsets (or slots) within tuples, we need only nat-
ural constants and addition. To write real programs, we would need more data types,
conditionals, and recursive functions. These features are orthogonal, and omitted from
the formal presentation for brevity (although we sometimes use them in examples).
The primitive reductions in Fig. 2 may help to elucidate these operations. The origi-
nal paper [20] includes more details, such as the definition of values (v) and evaluation
contexts. We will recast these details in a typed setting in section 3.

The most general strategy for encoding objects is this: represent a method suite
as a tuple of functions (also known as a virtual function table, or vtable), and use a

e ::= x | n | e1 +e2 | λ x.e | e1 e2 | 〈e1, ...,en〉 | e1 @e2 | e1 @e2← e3
| e;〈e1, ...,en〉 | {l1 =e1, ..., ln =en} | e# l

Fig. 1. Links expression syntax

n1 +n2 � n3 where n3 = n1 +n2
(λ x.e) v � e[v/x]

〈v0, ...,vn−1〉@ i � vi where i < n
〈v0, ...,vn−1〉@ i← v′ � 〈v0, ...,vi−1,v′,vi+1, ...,vn−1〉 where i < n

〈v0, ...,vn−1〉;〈v′0, ...,v′m−1〉 � 〈v0, ...,vn−1,v′0, ...,v′m−1〉
{l0 =v0, ..., ln−1 =vn−1}# l � vi where l = li

Fig. 2. Links reduction rules

80 C. League and S. Monnier

let CircleBBox = λ 〈sz,vt,dc〉.
let center ind = dc#center in
let radius ind = dc# radius in
let area ind = dc#area in
let dc′ = {center=center ind, radius= radius ind, area=area ind, bounds=sz} in
let area super = vt@area ind in
let area = λ self.(area super self) ∗ 4 / PI in
let bounds = λ self. let 〈x,y〉 = ((self@0)@center ind) self in

let r = ((self@0)@radius ind) self in
〈〈x− r,y− r〉,〈x+ r,y+ r〉〉 in

let vt′ = (vt@area ind← area);〈bounds〉 in 〈sz+1,vt′,dc′〉

Fig. 3. Translation of simple class generator into Links. We take several liberties with the syntax:
let x = e in e′ is the obvious syntactic sugar for ((λ x.e′) e), but we also permit pattern-matching
on tuples.

dictionary d to map method labels to natural numbers, representing the correspond-
ing slots in the vtable. Objects are tuples with a pointer to the vtable (shared by all
objects created by that class). If the vtable is in the first slot (offset zero) of the ob-
ject x, then the self-application expression for invoking a method named m would be
((x@0)@ (d #m)) x.

There is of course an important connection between the dictionary and the vtable in
this representation, but they need not be packaged together. To compile a language (such
as Moby or OCaml) in which base classes become known at link time, the dictionary
would be a module parameter. All dictionary applications would be lifted to the top level
of each module, so they occur at link time (i.e., functor application time). To compile
Loom, in which classes are first-class values, a dictionary will need to be packaged
with each object and passed around at run time. To compile Java, the dictionary is
not needed at all, because the layout of the super class vtable is completely known at
compile time.1

We can represent each class as a triple: the vtable and the dictionary, together with
the size of the vtable. The size is needed so that when we extend non-manifest base
classes, we can compute the offsets of new methods added to the vtable. We omit fields
and constructors for convenience, but they pose no additional problems. A class that
inherits from an unknown base class is therefore represented as a function that generates
a new class triple from an existing one. The function is applied once the base class is
provided. Figure 3 shows a rough translation of the example from section 1.

CircleBBox is a function whose argument is a triple representing a super class.
We begin the function by looking up the offsets of all the methods in the super class,
and then constructing the dictionary for the new class we are generating. It has one
new method (bounds), so the new vtable will be larger by one slot. Next, we fetch
the existing implementation of area from the super class’s vtable vt; it will be called
in the new implementation of area. In the implementation of bounds, we invoke two

1 Here, we assume compilation to native code, which is done dynamically in many implementa-
tions. The observation is not true when producing JVM class files, which make extensive use
of symbolic references and enjoy binary compatibility.

Typed Compilation Against Non-manifest Base Classes 81

methods on self. We assume that an object is represented as a tuple with a pointer to
its vtable at offset zero. In the final let expression, we create the new vtable using the
functional update and tuple extension operators.

Fisher et al. [20] give further examples and justification for this encoding. Our goal
in this paper is to achieve the benefits of Links in a typed representation. There appear
to be two relatively independent problems here: (1) develop a sound but flexible type
system for the Links primitives, and (2) reflect the various subtype relationships of the
source language into the intermediate language.

Both of these problems are hard. In the first case, it is not just a matter of assigning
standard types—such as those developed by Cardelli and Mitchell [7]—to dictionary
lookup and tuple extension. The way the operators are used in Links, a given dictionary
will map method names to offsets in some set of tuples. Although we know nothing
about the size or structure of a tuple, we can use it anyway because some dictionary told
us where to find the method we need. Subtle invariants govern how these data structures
are linked to each other. To type-check Links, we must capture those invariants in the
type system.

As for the second problem, Links is intended to be a common intermediate language
for various class-based object-oriented languages. Such languages can have wildly dif-
ferent notions of subtyping and subsumption, from the simple name-based class and
interface relationships in Java to explicit upward casts in OCaml to the matching rela-
tion and match types in Loom [4]. One thing working in our favor at the intermediate
language level is that subsumption—where an object of one type may directly be treated
as an object of another (super) type—is not strictly necessary. The compiler may insert
explicit coercions that adjust the types of objects as needed—with no impact on the
run-time behavior—as long as these coercions are proved sound.

3 A New Typed Intermediate Language

Shao et al. [33] introduced a framework “for explicitly representing complex proposi-
tions and proofs in typed intermediate and assembly languages.” The set of types that
classify computation terms is defined within the Calculus of Inductive Constructions
(CIC) [14]. The semantics of the computation language can then incorporate proposi-
tions and proofs expressed in CIC.

As an example, Shao et al. define a language with an unchecked array access oper-
ator. One of its operands (apart from the array and the index) is a proof that the index is
less than the length of the array. If both numbers are known at compile-time, generating
these proofs as constants is quite easy. Otherwise, the if expression—used to check the
index against the bound dynamically—provides proofs to its branches that relate to the
semantics of its test expression. This language permits safe bounds check elimination.

The full power of CIC is available in generating the proofs, but they are (like types)
compile-time phenomena only: once an expression is shown to be well-formed, the
proofs and types may be erased and have no impact on the behavior and performance
of the program.

The Calculus of Constructions [13] rests on the most powerful corner of the λ
cube [2]. It can encode Church’s higher-order predicate logic via the Curry-Howard

82 C. League and S. Monnier

isomorphism [23]. Extended with inductive definitions, it is the basis for the Coq Proof
Assistant [12]. In this paper, we will use a typographically-enhanced variant of Coq 8
syntax.2 In fact, the definitions in this paper are automatically extracted and sent to Coq
for verification.

CIC is most conveniently expressed as a pure type system, where abstractions and
applications at different levels are expressed in a uniform syntax, but classified under
different sorts. The sorts of CIC include SET, PROP, and TYPE. We will use meta-
variables τ , σ , κ , and f to range over CIC terms, where τ is usually used for terms
corresponding to traditional types, κ for terms corresponding to traditional kinds, f
for type functions, and σ for everything else. The dependent product type is written as
Πα : σ1.σ2, or as σ1→ σ2 if α does not appear free in σ2. This type is introduced by
abstractions of the form λ α :σ1.σ2 and eliminated by applications σ1 σ2. The calculus
supports inductive definitions, constructors, and dependent elimination. We freely use
the Coq match and Fixpoint syntax for eliminations, as well as other syntactic
niceties like implicit arguments.

3.1 Syntax of Types and Terms

Our first task is to define a set of types for our computation language, LITL.3 From
the Coq library, we import the option constructor and the definition nat : SET of nat-
ural numbers in terms of zero (O) and the successor function (S). We will also need
sym : SET to represent labels in the dictionary type. Symbols could be represented as
natural numbers, or defined (as in the companion technical report [24]) as sequences of
characters from some alphabet. Here is the inductive definition of types in LITL:

Inductive Ty : SET ≡
| arw : Ty→ Ty→ Ty
| snat : nat→ Ty
| tup : nat→ (nat→ Ty)→ Ty
| dict : (sym→ option Ty)→ Ty
|mu′ : Π k : SET.(k→ Ty)→ Ty
| all : Π k : SET.(k→ Ty)→ Ty
| ex : Π k : SET.(k→ Ty)→ Ty.

Definition mu ≡ mu′ (k ≡ Ty).

arw τ1 τ2 is the type of a function mapping values of τ1 to values of τ2. snat n̂ is
the singleton type of the natural number n; that is, the value 0 has type snat O and
the expression 1+1 has type snat (S (S O)). tup n̂ f is the type of a tuple of size n
where f is a type function which maps the index of each field to its type. dict f is the
type of a dictionary where f is a type function that maps each label to the type of its
corresponding value. mu f , all κ f , and ex κ f are the higher-order abstract syntax
encoding [30] of resp. the iso-recursive type μx. f x, the universally quantified type
∀x :κ . f x, and the existential type ∃x :κ . f x.

2 With version 8, Coq moved to a weaker, predicative variant of CIC. We need the impredicative
version, which is available with the command-line argument -impredicative-set.

3 LITL Is Typed Links.

Typed Compilation Against Non-manifest Base Classes 83

e ::= x | n | e1 +e2 | f | e1 e2 | e [τ] | 〈e1, ...,en〉 | e1 @e2 [σ] | e1 @e2 [σ]← e3
| e;〈e1, ...,en〉 | {l1 =e1, ..., ln =en} | e# l [σ] | cast [σ]e | [τ1, e � τ2]
| open e1 as [α, x] in e2 | folde as τ | unfolde

f ::= λ x :τ.e | Λα :σ . f

Fig. 4. LITL term syntax

To classify an unknown natural number, we hide its value using an existential type:

Definition some nat : Ty ≡ ex snat.

(Thanks to Coq’s implicit arguments feature, the k parameter of ex is inferred from the
type of snat.) We can define syntactic sugar for the uninhabited void type:

Definition void : Ty ≡ all (λ t. t).

Tuples are described by their size, and a (type-level) function that maps indices to com-
ponent types. To specify the function, we will often build a list of types and pass it to
the ith function:

Definition ith : list Ty→ nat→ Ty ≡ λ l i. nth i l void.

We are using list and nth from the Coq library. Lists are constructed from nil and cons
(::), and nth has type Πα :SET.snat→ list α→ α→ α , where the α is implicit. We use
void as the default case, for when the index is out of range. Pairs and triples are used
fairly often in our encodings, so it is helpful to define more syntactic sugar:

Definition tup2 : Ty→ Ty→ Ty ≡ λ t u. tup 2 (ith (t :: u :: nil)).
Definition tup3 : Ty→ Ty→ Ty→ Ty ≡ λ t u v. tup 3 (ith (t :: u :: v :: nil)).

Dictionaries are described by a (partial) function that maps labels to types. The function
relies on the option : SET→ SET type constructor of Coq, which is either None : Πα :
SET.option α or Some : Πα : SET.α→ option α . Again, we specify the function using
a list (in this case a list of pairs, representing a map) and a lookup function:

Definition map : SET ≡ list (prod sym Ty).
Fixpoint lookup (m : map) (x : sym) {struct m} : option Ty ≡
match m with nil⇒ None | (y,v) :: m⇒ ifeq x y (Some v) (lookup m x) end.

The syntax of the type-annotated computation language appears in Fig. 4. It is essen-
tially the same syntax as the untyped version in Fig. 1, but we add a few type operators
and annotations.

The tuple selection and update operators now expect a CIC expression σ , represent-
ing a proof that the index is less than the size of the tuple. (We use lt : nat→ nat→ PROP

from the Coq library.) The labels in the dictionary construction and lookup syntax are
CIC expressions of set sym. We also added standard type manipulation terms such as the
type abstraction Λα :σ . f and its corresponding type instantiation e [τ], existential pack-
age constructor [τ1, e � τ2] and its corresponding destructor (open e1 as [α, x] in e2),
as well as recursive type folding (folde as τ) and unfolding (unfolde). Finally, there
is a cast expression (cast [σ]e). Here, σ should be a proof that eq τ1 τ2, where eq is the
built-in (Leibniz) equality in Coq. Then, if e has type τ1, the entire cast expression can
be considered to have type τ2. See the typing rules in section 3.3.

84 C. League and S. Monnier

3.2 Dynamic Semantics

The dynamic semantics of LITL are defined in terms of a small-step reduction �. We
distinguish a subset of the expressions as values. The primitive reduction rules are the
only enlightening part; the definition of values and congruence rules are available in the
extended technical report [24].

Primitive reductions e � e′

n1 +n2 � n3 where n3 = n1 + n2
(1) (λ x : .e) v � e[v/x] (2)

(Λα : . f) [τ] � f [τ/α]
(3)

cast []v � v
(4)

open [τ, v �] as [α, x] in e � e[v/x][τ/α]
(5)

unfold(foldv as τ) � v
(6)

〈v1, ...,vn〉@ i []← v′� 〈v1, ...,vi,v′,vi+2, ...,vn〉 (7)

〈v1, ...,vn〉;〈v′1, ...,v′m〉� 〈v1, ...,vn,v′1, ...,v
′
m〉 (8) 〈v1, ...,vn〉@ i [] � vi+1

(9)

{l1 =v1, ..., ln =vn}# li [] � vi
(10)

3.3 Static Semantics

To specify the static semantics of this language, one more definition will be needed:

Fixpoint append (n : nat) (f g : nat→ Ty) (i : nat) { struct i } : Ty ≡
match i with O⇒ (match n with O⇒ g O | ⇒ f O end)
| S i⇒match n with O⇒ g (S i)

| S n⇒ append n (λ x. f (S x)) g i
end

end.

The judgments are Δ �CIC τ : σ from the type language and Δ ; Γ � e : τ for term for-
mation. The environment Δ maps type variables to their kinds, while Γ maps term vari-
ables to their types. LITL enjoys the subject reduction and progress properties; proofs
are in the technical report.

Term formation Δ ; Γ � e : τ

Δ �CIC Γ (x) : Ty
Δ ; Γ � x : Γ (x)

(11) Δ ; Γ � n : snat n̂
(12)

Δ ; Γ � e1 : snat τ1

Δ ; Γ � e2 : snat τ2

Δ ; Γ � e1 +e2 : snat (plus τ1 τ2)

(13)
Δ �CIC τ : Ty
Δ ; Γ ,x :τ � e : τ ′

Δ ; Γ � λ x :τ.e : arw τ τ ′
(14)

Δ �CIC σ : SET Δ ,α :σ ; Γ � f : τ α �∈ Δ
Δ ; Γ �Λα :σ . f : all (λ α :σ .τ)

(15)

Typed Compilation Against Non-manifest Base Classes 85

Δ ; Γ � e1 : arw τ ′ τ
Δ ; Γ � e2 : τ ′

Δ ; Γ � e1 e2 : τ

(16) Δ ; Γ � e : all τ ′ Δ �CIC τ : σ ′
Δ ; Γ � e [τ] : τ ′ τ

(17)

Δ �CIC σ : eq τ1 τ2

Δ ; Γ � e : τ1

Δ ; Γ � cast [σ]e : τ2

(18)
Δ �CIC τ1 : σ Δ �CIC τ2 : σ → Ty
Δ �CIC σ : SET Δ ; Γ � e : τ2 τ1

Δ ; Γ � [τ1, e � τ2] : ex τ2

(19)

Δ ; Γ � e : ex τ Δ �CIC τ ′ : Ty
Δ ,α :σ ; Γ ,x :(τ α) � e′ : τ ′
Δ ; Γ � open e as [α, x] in e′ : τ ′

(20) Δ ; Γ � e : τ (mu τ)
Δ ; Γ � folde as τ : mu τ

(21)

Δ ; Γ � e : mu τ
Δ ; Γ � unfolde : τ (mu τ)

(22) Δ ; Γ � ei : τ î ∀ i < n
Δ ; Γ � 〈e0, ...,en−1〉 : tup n̂ τ

(23)

Δ ; Γ � e1 : tup σ1 τ1 Δ ; Γ � e2 : snat σ2 Δ �CIC σ : lt σ2 σ1

Δ ; Γ � e1 @e2 [σ] : τ1 σ2

(24)

Δ ; Γ � e1 : tup σ1 τ1 Δ ; Γ � e2 : snat σ2

Δ ; Γ � e3 : τ1 σ2 Δ �CIC σ : lt σ2 σ1

Δ ; Γ � e1 @e2 [σ]← e3 : tup σ1 τ1

(25)

Δ ; Γ � e : tup τ1 τ2 Δ ; Γ � 〈e1, ...,en〉 : tup τ ′1 τ ′2
Δ ; Γ � e;〈e1, ...,en〉 : tup (plus τ1 τ ′1) (append τ1 τ2 τ ′2)

(26)

Δ ; Γ � ei : τi ∧ τ l̂i = Some τi ∀ i < n
l �∈ l⇒ τ l̂ = None

Δ ; Γ � {l0 =e0, ..., ln−1 =en−1} : dict τ

(27)

Δ ; Γ � e : dict τ
Δ �CIC σ : eq (τ l̂) (Some τ ′)

Δ ; Γ � e# l [σ] : τ ′
(28) Δ ; Γ � e : τ τ =β ηι τ ′

Δ ; Γ � e : τ ′
(29)

4 Typed Compilation of Classes

We now return to the running example, whose Links translation was provided in fig-
ure 3. In this section, we will develop the typed encoding of that example in stages,
showing additionally how objects are created from classes, and how various implemen-
tations of the base class circle can be specified.

4.1 Class Representation

Recall that in Links, CircleBBox was represented as a function that generates a new
class from a given one. The class argument was depicted as a triple 〈sz,vt,dc〉. We

86 C. League and S. Monnier

know very little about this (non-manifest) base class: the size and layout of the vtable
(vt) are unknown. We just know that the dictionary (dc) contains bindings for the three
known methods: center, radius, and area. Moreover, the dictionary maps the method
names to offsets that may be applied to the vt to select functions of the correct type.
Many different representations of this base class are possible.

The components of the class triple must be typed, so we begin by supposing that sz
has type snat n (for some n), that vt has type tup n f (for some f), and finally that dc
has type dict g (for some g). These three parameters (n, f , and g) uniquely specify the
representation of a class:

Definition Rep : SET ≡ (nat × (Ty→ nat→ Ty) × (sym→ option Ty)).
Definition size ≡ λ r : Rep. match r with (n, ,)⇒ n end.
Definition tupfn ≡ λ r : Rep. match r with (, f ,)⇒ f end.
Definition dictfn ≡ λ r : Rep. match r with (, ,g)⇒ g end.

We have made one small departure from the description above: the type of the tuple
function f includes an extra Ty argument. This is because the elements of the tuple are
methods, or functions over an explicit self parameter. The Ty argument is the type of
self. This cannot be fixed in one place, but must be a parameter because the method will
be reused in derived classes with different types for self. We will demonstrate how this
works in section 4.3.

Let us specify two distinct representations of circle, the base class in our exam-
ple. The methods use floating-point types, which we have not defined formally, but we
can suppose that they exist:

Parameter float : Ty.
Definition fpoint : Ty ≡ tup2 float float.
Definition frect : Ty ≡ tup2 fpoint fpoint.

Additionally, fpoint is a pair of floats, and frect is a pair of points (for the bounds
method). Here is the simplest representation, where the three methods appear in order
in the vtable, with nothing extra:

Definition circA rep : Rep ≡
(3, λ self . ith (arw self fpoint :: arw self float :: arw self float :: nil),
lookup ((center, snat 0) :: (radius, snat 1) :: (area, snat 2) :: nil)).

With this representation, we have the following equivalences in CIC:

size circA rep =β ηι 3
dictfn circA rep center =β ηι 0

tupfn circA rep τ 0 =β ηι arw τ fpoint

We can encode a more complex representation, where the methods appear in different
slots, and some slots are taken up by unknown values:

Definition circB rep : Rep ≡
(5, λ self . ith (arw self (ex snat) :: arw self float :: arw self fpoint ::

snat 0 :: arw self float :: nil),
lookup ((radius, snat 4) :: (area, snat 1) :: (center, snat 2) :: nil)).

Typed Compilation Against Non-manifest Base Classes 87

Here, slots 0 and 3 are taken up by other values; one of them is not even a function.
Still, the dictfn tells us where to find the three circle methods.

4.2 Class Specification

Now, how do we ensure that the three Rep components (n, f , g) correspond with one
another? The constraint, roughly, is that for each method m, there exists some j : nat
such that j < n and g m = Some (snat j) and f j = τ where τ is the expected type of the
method. We can encode precisely this property in CIC:

Inductive HasMethod (r : Rep) (m : sym) (t : Ty) : SET ≡
method : Π i : nat. lt i (size r)→ eq (dictfn r m) (Some (snat i))→
(Π self .eq (tupfn r self i) (arw self t))→ HasMethod r m t.

Notice that the offset i is specified in the method constructor, but does not appear in
the HasMethod term itself. This is a form of dependent pair, and thanks to the depen-
dent elimination feature of CIC, we can create selectors that mimic the dot notation
described by Cardelli and Leroy [6]. Here is the term to fetch the offset:

Definition offset ≡ λ r m t. λ p : HasMethod r m t.
match p with method i pf dc tp⇒ i end.

The other selectors have return types that include the offset of the parameter itself.

Definition proof ≡ λ r m t. λ p : HasMethod r m t.
match p as q return lt (offset q) (size r) with method i pf dc tp⇒ pf end.

Definition dicteq ≡ λ r m t. λ p : HasMethod r m t.
match p as q return eq (dictfn r m) (Some (snat (offset q)))
with method i pf dc tp⇒ dc end.

Definition tupeq ≡ λ r m t. λ p : HasMethod r m t.
match p as q return Π s.eq (tupfn r s (offset q)) (arw s t)
with method i pf dc tp⇒ tp end.

So, if we had some evidence that a representation r has a method center returning an
fpoint, it would be expressed as a term p :HasMethod r m fpoint. We can tuple several
HasMethod terms to create a signature for a class:

Definition circ signature ≡ λ r.
(HasMethod r center fpoint × HasMethod r radius float×
HasMethod r area float).

Now we create a term to use as evidence that circB rep meets the circ signature. It
consists of proofs that the indices in the dictionary are less than the tuple size, that the
types in the vtable match the signature, and so on.

Definition self equal ≡ λ t s. refl equal (arw s t).
Definition circB witness : circ signature circB rep ≡
(method circB rep center (le S (le S (le n 3))) (refl equal) (self equal fpoint),
method circB rep radius (le n 5) (refl equal) (self equal float),
method circB rep area (le S (le S (le S (le n 2)))) (refl equal) (self equal float)).

88 C. League and S. Monnier

Not all of the method parameters need to be specified, thanks to Coq’s implicit argu-
ments feature. The offset of each method, for example, is inferred from the proof term.
The center method appears at offset 2, so we must show that 2 < 5. The lt relation in
the Coq library is specified in terms of le (less than or equal): lt i n≡ le (S i) n. The term
le n 3 is the proof of 3 ≤ 3, and the two le S constructors transform that into a proof
of 3 ≤ 5 or, equivalently, 2 < 5. We define projections over circ signature types, to be
used later in examples:

Definition circ center : Π r.circ signature r→ HasMethod r center fpoint ≡
λ r p. match p with (ce,ra,ar)⇒ ce end.

Definition circ radius : Π r.circ signature r→ HasMethod r radius float ≡
λ r p. match p with (ce,ra,ar)⇒ ra end.

Definition circ area : Π r.circ signature r→ HasMethod r area float ≡
λ r p. match p with (ce,ra,ar)⇒ ar end.

4.3 Object Types and Method Invocation

Now that we can encode class representations (and constraints on them), we are ready
to define the types of objects. In this section, we will represent an object as a pair
containing the dictionary and the vtable. We ignore object fields throughout this work,
because they are orthogonal. Also, we mentioned before that in Moby and OCaml,
where classes can be functor parameters, it is not necessary to package the dictionary
with each object. In section 5, we demonstrate an optimized encoding that separates the
two components, so that dictionary lookups can be hoisted to the module level. Here is
the type of an object pair, given a class representation and the type of self:

Definition objrep : Rep→ Ty→ Ty ≡ λ r self .
tup2 (dict (dictfn r)) (tup (size r) (tupfn r self)).

Note the outer type constructor is tup2 (syntactic sugar for a pair) while the inner one
is tup, which receives the size of the tuple from the representation r. The self type is
resolved with a fixpoint, indicating that the self parameter must be an object of exactly
the same type as the object containing the method.

Definition selfty : Rep→ Ty ≡ λ r. mu (objrep r).

Finally, we must hide the representation type. Two existential quantifiers are used here.
The outer one hides the Rep, while the inner one hides the evidence that the representa-
tion matches some specified signature.

Definition objty′′ : Π sig : Rep→ SET.Π r.sig r→ Ty ≡ λ sig r . selfty r.
Definition objty′ : (Rep→ SET)→ Rep→ Ty ≡ λ sig r. ex (objty′′ sig r).
Definition objty : (Rep→ SET)→ Ty ≡ λ sig. ex (objty′ sig).

So, the type of a circle object is objty circ signature. In more conventional notation, the
object encoding is: ∃r :Rep.∃p :circ signature r.μα :Ty.objrep r α . (It is not necessary
to split the existentials over three Coq definitions, but it allows for shorter annotations
in some programs.)

Typed Compilation Against Non-manifest Base Classes 89

let invoke radius = λ x :objty circ signature.
open x as [r, x1] in open x1 as [p, x2] in let x3 = unfoldx2 in
let dc = x3 @0 [lt02] in let vt = x3 @1 [lt12] in
let j = dc# radius [dicteq (circ radius p)] in
let f = vt@j [proof (circ radius p)] in
let f = cast [tupeq (circ radius p) (selfty r)] f in f x2

Fig. 5. Code to invoke the radius method on an object x

Now we present a function that invokes the radius method on an object x. In sec-
tion 2, with untyped terms, this was written simply as ((x@1)@ ((x@0)# radius)) x.
Figure 5 contains a function that takes x as a parameter, and calls radius. The code is
shown in A-normal form [21] for readability, but this is not essential. Apart from the
open-open-unfold sequence in the beginning, the burden imposed by the type system
includes the proof annotations on tuple selection and dictionary lookup, and the cast
expression just before the (virtual) function call. This cast converts the function f from
an abstract type to an arrow type, so that it may be applied to a parameter. The terms
lt02 and lt12 in the select statements refer to these proof constants:

Definition lt02 : lt 0 2 ≡ le S (le n 1).
Definition lt12 : lt 1 2 ≡ le n 2.

If the objects contained fields, then these proofs would depend on the number of fields
in the tuple. To support this, the existential would also need to hide the size of the tuple,
m, and a proof of lt 1 m (from which the proof of lt 0 m could be derived).

These type operators and proof annotations buy quite a lot in terms of flexibility
and safety. In languages that support non-manifest base classes, the representations of
classes and objects have complex invariants that are now enforced by the type system
of the intermediate language.

4.4 Class Types and Instantiation

The type of a class is slightly more complex because the vtable in the class plays a
different role than the vtable embedded in an object (even though they are the same data
structure at run time). Methods must be inheritable. This means that the self parameter
will have different types at different points in the hierarchy. Therefore, in the class, the
vtable must be parameterized by the type of self. The only restriction is that self must
have at least the methods defined in the class in which the method is defined. We call
this parameterized vtable a method suite:

Definition methsuite′′ : Π sig : Rep→ SET.Rep→Π r′ : Rep.sig r′ → Ty ≡
λ sig r r′ . tup (size r) (tupfn r (selfty r′)).

Definition methsuite′ : (Rep→ SET)→ Rep→ Rep→ Ty ≡
λ sig r r′. all (methsuite′′ sig r r′).

Definition methsuite : (Rep→ SET)→ Rep→ Ty ≡
λ sig r. all (methsuite′ sig r).

Notice the subtle difference in usage between the representations r and r′. The former
is the representation of the current class (and determines the methods that appear in

90 C. League and S. Monnier

let new circ = λ c0 :classty circ signature.
open c0 as [r, c1] in open c1 as [p, c2] in
let dc = c2 @1 [lt13] in let ms = c2 @2 [lt23] in
let vt = ms [r] [p] in let x = fold〈dc,vt〉 as objrep r in
[r, [p, x � objty′′ circ signature r] � objty′ circ signature]

Fig. 6. Create a new circle object, given a circle class

the tuple), while the latter is the representation of some subclass that is inheriting these
methods. Its only impact is on the type of the self parameter.

We noted previously that each class is represented as a triple. Here is the definition
of the triple, in terms of the class signature sig and representation r.

Definition classtup : (Rep→ SET)→ Rep→ Ty ≡
λ sig r. tup3 (snat (size r)) (dict (dictfn r)) (methsuite sig r).

As with object types, we must conceal the representation along with the proof that it
meets the specified signature.

Definition classty′′ : Π sig : Rep→ SET.Π r.sig r→ Ty ≡ λ sig r . classtup sig r.
Definition classty′ : (Rep→ SET)→ Rep→ Ty ≡ λ sig r. ex (classty′′ sig r).
Definition classty : (Rep→ SET)→ Ty ≡ λ sig. ex (classty′ sig).

This way, both the ‘A’ and ‘B’ implementations of the circle class can appear to have
the same type: classty circ signature.

Figure 6 contains an implementation of the ‘new’ operator, that creates a new object
from a class. It instantiates the method suite with the representation of the provided
class, so that the methods will accept the new object as the self argument. Then, the
dictionary and vtable are paired together, folded, and re-packaged. As before, lt13 and
lt23 stand for constant proof terms.

4.5 Class Declarations

These sophisticated representations of class and object types would be for naught if we
are unable to implement a circle class in the first place. In this section, we demonstrate
that the type classty circ signature is habitable: see the definition of the ‘B’ circle class
in figure 7. We do not provide complete implementations of the methods: for that, we
would need to define floating-point operations and fields.

With this class, we can now connect together the code in the two previous figures
like this: invoke radius (new circ circB). This creates a new circle from circB, invokes

let circB =
let dc = {radius=4,area=1,center=2} in
let ms = Λ r :Rep.Λp :circ signature r.

〈λ s :selfty r. /* code of type ex snat */,λ s :selfty r. /* code of type float */,
λ s :selfty r. /* code of type fpoint */,0,λ s :selfty r. /* code of type float */ 〉 in

let c = 〈5,dc,ms〉 in
[circB rep, [circB witness, c � classty′′ circ signature circB rep] � classty′ circ signature]

Fig. 7. An implementation of the circle class signature

Typed Compilation Against Non-manifest Base Classes 91

the radius method of that object, and returns a float. We leave it as an exercise to define
a different implementation circA, using the circA rep defined on page 86.

4.6 Extending an Unknown Base Class

Now we have come to the heart of the whole problem: typed compilation against a non-
manifest base class. Our running example extends some unknown class (that matches
the circle signature) by overriding area and adding a new method bounds. In CIC, we
can define a signature for this derived class, bbox:

Definition bbox signature ≡ λ r.
(HasMethod r center fpoint × HasMethod r radius float×
HasMethod r area float × HasMethod r bounds frect).

The representation of the derived class will of course depend on the layout of its parent.
Still, we can define a function to produce a bbox representation, given another repre-
sentation r that matches the circ signature:

Definition bbox rep : Π r : Rep.circ signature r→ Rep ≡ λ r p.
(plus 1 (size r), λ self . append (size r) (tupfn r self) (ith (arw self frect :: nil)),
lookup ((center, snat (offset (circ center p))) ::

(radius, snat (offset (circ radius p))) :: (area, snat (offset (circ area p))) ::
(bounds, snat (size r)) :: nil)).

This works by retrieving the offsets of the inherited methods from the witness p, and
placing the bounds method in slot n—the size of the parent representation. The tuple
function uses append to join the type of the new method with the types of the parent.
With this (parameterized) representation, we have the following:

size (bbox rep circB witness) =β ηι 6
dictfn (bbox rep circB witness) center =β ηι Some (snat 2)

dictfn (bbox rep circB witness) bounds =β ηι Some (snat 5)
tupfn (bbox rep circB witness) τ 5 =β ηι arw τ frect

The next step is to prove that the extended representation matches the bbox signature.
This is more difficult than it may seem at first. It depends critically on the semantics of
append. First, extending a tuple with new elements does not alter the types of existing
elements. Second, the new elements can be retrieved by adding the size of the original
tuple to their offsets. These properties are expressed by the following Coq lemmas:

Lemma append semantics1 : Π i n. lt i n→Π f g.eq (append n f g i) (f i).
Lemma append semantics2 : Π k n f g.eq (append n f g (plus k n)) (g k).

With these properties, we can prove the following term:

Definition bbox witness : Π r.Π p : circ signature r.bbox signature (bbox rep p).

As needed, this shows that the extended representation matches the bbox signature.
(Proofs for these properties appear in a companion technical report [24].)

92 C. League and S. Monnier

let circle bbox = λ c :classty circ signature.
open c as [r, c] in open c as [p, c] in
let sz = c@0 [lt03] in let dc = c@1 [lt13] in let ms = c@2 [lt23] in
let ci = dc#center [dicteq (circ center p)] in
let ri = dc# radius [dicteq (circ radius p)] in
let ai = dc#area [dicteq (circ area p)] in
let dc′ = {center=ci, radius= ri,area=ai,bounds=sz} in
let ms′ = Λ r′′ :Rep.Λp′′ :bbox signature r′′.

let vt = ms [r′′] [bbox2circ p′′] in
let bounds m = λ s :selfty r′′. /* code of type frect */ in
let area m = vt@ai [proof (circ area p)] in
let area m = cast [tupeq (circ area p) (selfty r′′)]area m in
let area m′ = λ s :selfty r′′. /* code of type float */ in
let area m′ = cast [sym eq (tupeq (circ area p) (selfty r′′))]area m′ in
let vt′ = vt@ai [proof (circ area p)]← area m′ in
vt′;〈bounds m〉 in

let c′ = 〈1+sz,dc′,ms′〉 in
let c′ = [bbox witness p, c′ � classty′′ bbox signature (bbox rep p)] in
[bbox rep p, c′ � classty′ bbox signature]

Fig. 8. Code to extend a non-manifest base class

Just one more definition is needed to extend a non-manifest base class. We instanti-
ate the super class dictionary with the representation of the derived class. This is what
permits us to pass bbox objects to those circle methods. To do this, we must prove that
the derived representation still matches the super class signature. Fortunately, this is
trivial: just a repackaging of the HasMethod properties, to drop the one referring to the
bounds method:

Definition bbox2circ : Π r.bbox signature r→ circ signature r ≡
λ r p. match p with (ce,ra,ar,bo)⇒ (ce,ra,ar) end.

Figure 8 contains the complete code for extending an unknown base class. It corre-
sponds to the OCaml functor given in the introduction, and is a typed version of the
Links code in section 2. Most of the non-trivial typing aspects have already been ex-
plained. Look for occurrences of bbox rep, bbox witness, and bbox2circ in the typing
annotations. In our example, the area method included a super call. We omitted the call
itself in the figure (along with the rest of the method bodies), but it works very simply.
At the point where we define area m′, we have already selected the area method from
vt, the super class vtable. Within the body of area m′, we would apply area m to s to
call the super-class method.

Also, notice the cast applied to the overridden area method before updating the
vtable. It is the inverse of the cast used when selecting a method from the vtable. We
just defined area m′, so it has an arrow type to begin with. But the designated slot of
the vtable has an opaque type, literally tupfn r (selfty r′′) (offset (circ area p)), which
cannot be reduced because r is a variable. But we can use (a symmetric version of) the
tupeq property to cast from the concrete to the opaque, and then update that slot of the
vtable.

Typed Compilation Against Non-manifest Base Classes 93

5 Extensions

5.1 Encoding Subsumption as Type Coercions

Object-oriented languages enjoy subsumption: a context expecting an object of type
t will be satisfied with an object of some subtype of t. The precise rules about what
constitutes a subtype, and where subsumption may be used, differ with each language.

Our intermediate language does not directly support subtyping. Nevertheless, if we
examine object types of two classes in a subclass relationship, we notice they differ
only in what is known about the (hidden) representation. It is always possible to open
and repackage the object with less information about its representation. The example in
Fig. 9 casts a bbox object to a circle (its super class).

This is done entirely with type coercions, so it has no cost at run time. The bbox2circ
operator, defined on page 92, coerces the witness from type bbox signature r to type
circ signature r, by dropping the information about the bounds method.

This alone is sufficient to support many object-oriented languages, in which sub-
sumption is really just forgetting information about some of the methods or fields in
the object. This is equivalent to so-called width subtyping on records. Some languages
(including OCaml) support limited forms of depth subtyping, where the types of the
fields or methods themselves can change, in a co- or contra-variant manner.

Subtyping can always be encoded using explicit coercions, but that would have
a negative impact on the efficiency of our object code—unless the coercions are just
type-level operators, like the open and pack in Fig. 9. We believe it would be possible
to define a (co-)inductive relation subtype :Ty→ Ty→ SET in CIC, whose constructors
implement the usual subtyping rules. A term that inhabits subtype τ1 τ2 would thus be
equivalent to a meta-logical derivation of τ1 ≤ τ2. Our cast operator would be extended
to accept proofs of subtype τ1 τ2 rather than just eq τ1 τ2. This is reminiscent of the
explicit coercion techniques proposed by Crary [15], but formulating the techniques
within our framework remains an avenue for future work.

Perhaps surprisingly, it is also possible to encode dynamic casts in this framework.
It just requires a way to identify classes at run-time; such an identifier (tag) will be one
parameter of the (polymorphic) down-cast operator. League et al. [25] demonstrated
one way to do this for Java; we believe the same technique can be adapted to LITL.

let upcast = λ x :objty bbox signature.
open x as [r, x] in open x as [p, x] in
[r, [bbox2circ p, x � objty′′ circ signature r] � objty′ circ signature]

Fig. 9. To upcast a bbox to a circle, we open and repackage the object

5.2 Removing the Dictionary from Object Representations

One of the advantages of Links, as a common IL for object-oriented languages, is its
pay-as-you-go efficiency. Languages that do not need dictionaries to find method offsets
at run time are not required to use them. For example, if method offsets are known at
compile time, they can be hard-coded into the object types, without needing dictionaries
or even symbols. Here are updates to some of the definitions from the last section.

94 C. League and S. Monnier

Definition FixedRep : SET ≡ (nat × (Ty→ nat→ Ty)).
Inductive FixedMethod (r : FixedRep) (i : nat) (t : Ty) : SET ≡

fmethod : lt i (fst r)→ (Π self : Ty.eq (snd r self i) (arw self t))→
FixedMethod r i t.

We have just removed the dictionary function from the representation. The offset i now
appears in the FixedMethod, rather than remaining hidden. The signature for a circle can
be expressed as follows—note the replacement of method names by method offsets:

Definition circ fsig : FixedRep→ SET ≡ λ r.
(FixedMethod r 0 fpoint × FixedMethod r 1 float × FixedMethod r 2 float).

The object type is the same as before, but with offsets now exposed in the bound of one
of the existential quantifiers. Supporting link-time (but not run-time) use of dictionaries
is more involved. If classes can be module parameters, but modules are not recursive,
then all the dictionary lookups ought to be lifted to the top level in each module, outside
of any loops. In this case, dictionaries should not be packaged within objects, but should
just be module parameters.

5.3 Supporting Mixins and Traits

Bracha and Cook [3] define a mixin as an “abstract subclass; i.e., a subclass definition
that may be applied to different super classes to create a related family of modified
classes.” This seems similar in spirit to the parameterized class we defined. The techni-
cal difference is that “mixins properly extend the class that they are applied to” [20]. In
our example, base class methods not specified in the CIRCLE signature remain hidden
in the derived class. In contrast, a mixin can extend an unknown base class, where any
methods unspecified by the mixin are preserved in the interface of the derived class.

Following our example, a BboxMixin could take any class with center and radius
methods, and add a bounds method. Any other super class methods (area, move,
enlarge, etc.) would be preserved in the sub class. A mixin thus defines a representation
transformer that overlays an existing dictionary with some new methods.

With simple parameterized classes, the signature can be specified as part of the
definition. With mixins, this is not so simple. The signature will not be known until the
point of instantiation. We do, however, need to know a few things about the transformed
representation. First, it must have a bounds method, which returns a pair of points (type
frect). Second, any methods it previously defined are preserved. There is one exception:
if it had a bounds method previously, that one is shadowed by the newer definition.
Thus, we must be able to say that a method label is not equal to bounds:

Definition noteq : sym→ sym→ PROP ≡ λ m1 m2.
Π k : SET.Π f g : k. ifeq m1 m2 f g = g.

Definition bbmix sig : (Rep→ TYPE)→ Rep→ TYPE ≡ λ sig r. Π r′.
(HasMethod r′ bounds frect→Π m t.noteq m bounds→

HasMethod r m t→ HasMethod r′ m t)→ sig r′.

The above definition plays the role of a signature for the mixin, where the sig parameter
is the ultimate signature, provided when the mixin is applied to a super class; r is the
super class representation, and r′ is the subclass representation.

Typed Compilation Against Non-manifest Base Classes 95

Traits are another, similar mechanism for code reuse [32]. A trait is just a set of
named methods, that can depend on some other (specified) methods. “The main differ-
ence between mixins and traits is that mixins force a linear order in their composition”
[17]. We have not yet determined whether our encoding of mixins extends to traits, but
we intend to pursue this as future work.

6 Related Work

There is a long history of encoding objects and classes in typed λ -calculi and other non-
object-based representations [5]. Several recent encodings are specifically designed for
use in certifying compilers, where run-time efficiency is a concern [9, 16, 22, 25]. They
each have their advantages—see [9] or [25] for comparisons—but none of them support
separating offset determination from method retrieval.

The encoding presented in this paper is a natural generalization of the one developed
by League et al. [25] for Java. They specified tuples as sequences of rows [31], where
the tail of a sequence could be abstracted by a type variable. An object with a method in
slot zero returning τ would have the type: ∃ρ :Ty→ R1.μα :Ty.〈α → τ ; ρ α〉, where
the quantified variable ρ conceals the types of any additional methods. Compare that to
the encoding introduced in this paper:

∃n :nat.∃ f :Ty→ nat→ Ty.∃p :(0 < n∧ (∀β :Ty. f β 0 = arw β τ)).
μα :Ty. tup n (f α)

This is the ‘fixed’ representation from section 5.2. In both cases, an existential hides a
specification of the elements of the tuple (ρ above, f below), parameterized by the type
of the explicit self argument. Both encodings use a recursive type in the same way: to
equate the type of the self argument with the type of the object containing the methods.
Finally, both encodings reveal (in different ways) the types of known methods in the
tuple.

Stone [34] developed a Calculus of Objects and Indices (COI) which has some
similarities to our work. Although it is an object calculus (method invocation is atomic)
Stone says, “it may be possible to use the ideas here to obtain a typed variant [of Links].”
Like our language, COI supports dictionaries and first-class indices. Rather than single-
ton types, indices “have types of the form τ⇒σ ; this type classifies offsets that access
a component of type σ within an object of type τ .”

As specified, COI is not suitable as an intermediate language for compilers, or as a
target language for proof-carrying code. It takes objects and object extension as prim-
itive, and encodes classes in terms of objects. The class encoding does not support
super calls, though it seems possible to add them. Due to the granularity of the calcu-
lus, optimizations like caching method pointers and devirtualization are not expressible.

Pushing COI to a lower level while maintaining soundness may be challenging. As
is, its soundness relies on distinguishing between exact and inexact object types. What
becomes of these concepts when objects are no longer primitive? Often, decomposing
objects into tuples and functions opens up unintended ways of accessing them, leading
to unsoundness [26, 8]. It would be very interesting to see the impact of the COI design
at a lower level.

96 C. League and S. Monnier

A few other works deserve mention. Based on our previous work on Java [25],
Vanderwaart [35] designed a typed IL for Loom. Because of the richness of Loom, the
encoding resulted in inefficient method dispatch. Fisher and Reppy [18] translate Moby
classes into an object calculus, designed for studying the foundations but unsuitable
as a compiler IL. Ciaffaglione et al. [10] mechanize the semantics for an imperative
object-based calculus, using co-inductive definitions in Coq.

7 Conclusion and Future Directions

We have developed LITL, a sound, low-level intermediate language with dictionaries,
tuples, functional update, and tuple extension. Fisher et al. [20] showed that these prim-
itives are useful for compiling various object-oriented languages, with different object
models and notions of inheritance. Dictionaries support link-time or run-time determi-
nation of method offsets, for languages where the layout of a base class may not be
known at compile time.

Following Shao et al. [33], the type system of LITL is embedded in the Calculus of
Inductive Constructions [14]. Our reliance on CIC permits flexible reasoning about the
offsets of methods, which are now first-class values with singleton types constructed
from natural numbers.

We proposed a simple example in OCaml—where a super class is provided as a
functor parameter—and showed by example how to encode objects, classes, method
dispatch, new, and inheritance from a non-manifest base class. Our technique supports
width (but not depth) subtyping using type coercions. Alternative representations are
possible, where the dictionary is omitted (because offsets are already known) or passed
separately from the object.

In the future, we expect to support depth subtyping, using a technique outlined
in section 5.1. Furthermore, we intend to choose a small source language with sev-
eral of these advanced object-oriented features and specify a complete type-preserving
translation.

Bibliography

[1] A. W. Appel. Foundational proof-carrying code. In Proc. IEEE Symp. on Logic in Computer
Science (LICS), pages 247–258, June 2001.

[2] H. Barendregt. Typed lambda calculi. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume 2. Oxford, 1992.

[3] G. Bracha and W. Cook. Mixin-based inheritance. In Proc. Conf. on Object-Oriented
Programming Systems, Languages, and Applications, pages 303–311, October 1990.

[4] K. B. Bruce, A. Fiech, and L. Petersen. Subtyping is not a good ‘Match’ for object-oriented
languages. In Proc. European Conf. Object-Oriented Prog., volume 1241 of LNCS, pages
104–127, Berlin, 1997. Springer-Verlag.

[5] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Information and
Computation, 155(1–2):108–133, 1999.

[6] L. Cardelli and X. Leroy. Abstract types and the dot notation. In Proc. IFIP Working Conf.
on Programming Concepts and Methods, pages 466–491, Israel, April 1990.

Typed Compilation Against Non-manifest Base Classes 97

[7] L. Cardelli and J. C. Mitchell. Operations on records. In C. A. Gunter and J. C. Mitchell,
editors, Theoretical Aspects of Object-Oriented Programming, Foundations of Computing
Series. MIT Press, 1994.

[8] B.-Y. E. Chang, A. Chlipala, G. C. Necula, and R. R. Schneck. Type-based verification of
assembly language for compiler debugging. In Proc. ACM Workshop on Types in Language
Design and Implementation (TLDI), pages 91–102, 2005.

[9] J. Chen and D. Tarditi. A simple typed intermediate language for object-oriented languages.
In Proc. Symp. on Principles of Programming Languages. ACM, January 2005.

[10] A. Ciaffaglione, L. Liquori, and M. Miculan. Imperative object-based calculi in co-
inductive type theories. In Proc. Conf. on Logic for Programming, Artificial Intelligence,
and Reasoning, volume 2850 of Lecture Notes in Computer Science, pages 59–77, 2003.

[11] C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline, and M. Plesko. A certifying compiler for
Java. In Proc. Conf. on Programming Language Design and Implementation, Vancouver,
June 2000. ACM.

[12] Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA, version 8.0
edition, June 2004.

[13] T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76:
95–120, 1988.

[14] T. Coquand and C. Paulin-Mohring. Inductively defined types. In Proceedings of Colog
’88, volume 417 of Lecture Notes in Computer Science. Springer, 1990.

[15] K. Crary. Typed compilation of inclusive subtyping. In Proc. Int’l Conf. Functional Pro-
gramming, September 2000.

[16] K. Crary. Simple, efficient object encoding using intersection types. Technical Report
CMU-CS-99-100, Carnegie Mellon University, Pittsburgh, January 1999.

[17] K. Fisher and J. Reppy. A typed calculus for traits. In Proc. Int’l Workshop on Foundations
of Object-Oriented Languages, January 2004.

[18] K. Fisher and J. Reppy. Foundations for moby classes. Technical report, Bell Labs, De-
cember 1998.

[19] K. Fisher and J. Reppy. The design of a class mechanism for Moby. In Proc. Conf. on
Programming Language Design and Implementation, New York, 1999. ACM.

[20] K. Fisher, J. Reppy, and J. G. Riecke. A calculus for compiling and linking classes. In
Proc. European Symp. on Programming, pages 135–149, 2000.

[21] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with con-
tinuations. In Proc. Conf. on Programming Language Design and Implementation, pages
237–247, Albuquerque, June 1993.

[22] N. Glew. An efficient class and object encoding. In Proc. Conf. on Object-Oriented Pro-
gramming Systems, Languages, and Applications. ACM, October 2000.

[23] W. A. Howard. The formulae-as-types notion of constructions. In To H.B. Curry: Essays
on Computational Logic, Lambda Calculus, and Formalism. Academic Press, 1980.

[24] C. League and S. Monnier. Typed compilation against non-manifest base classes. Extended
version, available from authors’ web sites, December 2005.

[25] C. League, Z. Shao, and V. Trifonov. Type-preserving compilation of Featherweight Java.
ACM Trans. on Programming Languages and Systems, 24(2):112–152, March 2002.

[26] C. League, Z. Shao, and V. Trifonov. Precision in practice: A type-preserving Java compiler.
In G. Hedin, editor, Proc. Int’l Conf. on Compiler Construction, volume 2622 of Lecture
Notes in Computer Science, pages 106–120. Springer, April 2003.

[27] D. A. Moon. Object-oriented programming with Flavors. In Proc. Conf. on Object-
Oriented Programming Systems, Languages, and Applications, pages 1–8, November 1986.

[28] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly lan-
guage. ACM Trans. on Programming Languages and Systems, 21(3), May 1999.

98 C. League and S. Monnier

[29] G. C. Necula. Proof-carrying code. In Proc. Symp. on Principles of Programming Lan-
guages, pages 106–119, Paris, January 1997. ACM.

[30] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proc. Conf. on Programming
Language Design and Implementation, pages 199–208, 1988.

[31] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension to ML.
Theory and Practice of Object Systems, 4, 1998.

[32] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable units of behav-
iour. In Proc. European Conf. Object-Oriented Programming, July 2003.

[33] Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou. A type system for certified binarios.
ACM Trans. on Programming Languages and Systems, 27(1):1–45, January 2005.

[34] C. A. Stone. Extensible objects without labels. ACM Trans. on Programming Languages
and Systems, 26(5):805–835, September 2004.

[35] J. C. Vanderwaart. Typed intermediate representations for compiling object-oriented lan-
guages. Williams College Senior Honors Thesis, 1999.

The Design of Application-Tailorable
Operating System Product Lines�

Daniel Lohmann, Wolfgang Schröder-Preikschat, and Olaf Spinczyk

Friedrich-Alexander University of Erlangen-Nuremberg,
Department of Computer Sciences,

Martensstr. 1, D-91058 Erlangen, Germany
http://www4.cs.fau.de

Abstract. System software for deeply embedded devices has to cope
with a broad variety of requirements and platforms, but especially with
strict resource constraints. To compete against proprietary systems (and
thereby to facilitate reuse), an operating system product line for deeply
embedded systems has to be highly configurable and tailorable. It is
therefore crucial that all selectable and configurable features can be en-
capsulated into fine-grained, exchangeable and reusable implementation
components. However, the encapsulation of non-functional properties is
often limited, due to their cross-cutting character. Fundamental system
policies, like synchronization or activation points for the scheduler, have
typically to be reflected in many points of the operating system com-
ponent code. The presented approach is based on feature modeling,
C++ class composition and overcomes the above mentioned problems
by means of aspect-oriented programming (AOP). It facilitates a fine-
grained encapsulation and configuration of even non-functional proper-
ties in system software.

1 Introduction

Due to the need for customized solutions, particularly the embedded systems do-
main calls for a large assortment of specialized operating system components.
Depending on the application case, not only are number and kind (in functional
terms) of the components varying, but also the same single component may ap-
pear in highly different versions. This is especially true for the broad field of deeply
embedded systems. Here, the phrase “deeply embedded” refers to systems forced
to operate under extreme constraints in terms of e.g. memory and/or CPU re-
sources, power consumption, and heat dissipation. The market of such systems is
huge and subject to an enormous cost pressure. In year 2000 about eight billion
microprocessors have been manufactured [32]. Only about two percent of them
went into the PC, laptop, workstation or server market, while 98% were dedi-
cated to embedded systems. About five billions of all were 8-bit microprocessors.
From the point of view of procurement, this “old-fashioned” technology is the best

� This work was partly supported by the DFG, grant no. SCHR 603/4.

G. Barthe et al. (Eds.): CASSIS 2005, LNCS 3956, pp. 99–117, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

100 D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk

compromise with respect to functionality and cost. The situation is not that differ-
ent today, as a look at automotive industry, chipcard technology, or the consumer
product market shows. Moreover, it can not be expected to change soon, given
that the envisioned scenarios of smart dust [20], ubiquitous computing [35] and
proactive computing [32] crucially depend on the bulk availability of very cheap,
self-organizing “intelligent” devices. Because of cost pressure—and in many cases
also because of misunderstandings about what the notion of “operating system”
stands for—one is faced with a situation in which the wheel is getting to be re-
invented fairly often. There is a zoo of commercial operating systems available at
the embedded systems market. Nevertheless, about 50% of the embedded systems
products come with proprietary solutions [34]. OS-functionality such as thread-
ing and interrupt handling is developed from scratch—again and again. The rea-
son is, that is simply impossible to build a ”one-fits-all” system that fulfills the
requirements of all potential applications, while still being thrifty and economi-
cal with system resources. The solution is therefore to tailor down the operating
system so it provides exactly the functionality required by the intended appli-
cation, but nothing more. Understanding an (embedded) operating system as a
software product line [36] seems to be a promising way to go. Commonalities of
and differences between individual members of the operating system family, as
well as their interdependencies and conflicting combinations, can be adequately
expressed on the basis of feature models [12], with the features representing the
functional and non-functional system properties. This leads to a family-based [27]
design approach. Examples for family-based, configurable operating systems in
the domain are e.g. eCos by RedHat Inc. [1], the OSEK standard which is widely
used in automotive industry [2], or our PURE operating system product line [5]
for the domain of deeply embedded devices. Although the results achieved with
these systems motivate the reuse of system software components for a number of
reasons, operating system product line development is not yet exercised very well
in this market. Another example that underpins the increasing demand of soft-
ware product line engineering is the automotive domain. Automobile electronics
makes up about 80% of all the innovations in a car. Furthermore, 90% of these
innovations come up with software and not hardware. Thus, software is not only a
functional issue of the mechatronics product “automobile”, but also an economical
one of high strategic importance. On the one hand, there is a strong need to reuse
software solutions across the different variants and models of a car. On the other
hand, in a large number of cases, highly specialized software solutions need to be
built depending on the actual car variant or model. Resolving this contradiction
is challenging and calls for highly careful system software designs and implemen-
tations. Most crucial in this setting are non-functional properties that are ingredi-
ent parts of single components or cross-cut in the extreme case the entire system
software. These properties not only limit component reusability but also impair
software maintenance in general. Being able to deal with software variability—
not only in the realm of operating systems—becomes more and more eminent for
embedded systems. For operating systems, this is of particular concern because of
their qualified placement between “a rock and a hard place”, namely application

The Design of Application-Tailorable Operating System Product Lines 101

software at the top and computer hardware at the bottom. Software variability
was and is an important issue in operating systems, and it will ever be. Alone re-
lying on object-oriented approaches to cope with the diversity of problems coming
up when developing embedded-systems software is not enough. Specialization by
means of inheritance, e.g., soon may result in unmaintainable class hierarchies if
the combinational complexity increases [26, 18]. Not to mention the risk of perfor-
mance loss and large memory footprints in the case of an excessive exploitation
of interface inheritance and, thus, late binding [14]. Alternative as well as sup-
plementing approaches are required in order to benefit from object orientation if
one wants to develop system software that is reusable and tailorable at the same
time. Aspect-oriented programming (AOP) [21] appears to be a proper paradigm
in order to maintain implementations of non-functional properties separate from
software components and, thus, improve reusability of the latter. The paper de-
scribes principles of the design and development of operating systems aiming at
a very high degree of customization not only with respect to lower-level hardware
but also higher-level user programs. Discussed are design rules, techniques, and
issues of tool support which are applicable not only in the course of developing em-
bedded operating systems from scratch, but also in the process of re-engineering
existing system software. Moreover, the approach presented may also be success-
fully applied in order to develop and maintain extensible as well as contractible
application software. Thus, the paper is about a fairly general approach that is
not only limited to the design and development of operating systems. Application
domain of the described principles is the field of deeply embedded systems. Fun-
damental concepts and techniques to produce highly reusable operating system
components are presented in section 2. Section 3 is about a case study, the thread
abstraction layer (TAL) of the PURE family of embedded operating systems [5].
In section 4, we will briefly discuss the approach as followed by the PURE succes-
sor CiAO [30] to encapsulate non-functional properties and to isolate cross-cutting
concerns. Conclusions are drawn in section 5.

2 Operating System Engineering

Most important in the development of operating systems for the embedded sys-
tems domain is the postponement of all those design and implementation deci-
sions that will potentially restrict applicability of system functions or compo-
nents. This includes that, perhaps, certain decisions are never be made in the OS
itself, but are rather postponed to the application programmer. References to
implementations of some non-functional properties are examples of such design
decisions. The following subsections discuss the cornerstones of an operating sys-
tem development process that supports highly scalable and customizable designs
and implementations.

2.1 Incremental System Design

Predominant issue in the development process of deeply embedded operating
systems must be understanding the system software as a program family [27]

102 D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk

and to follow a classical bottom-up approach. Strictly speaking, design deci-
sions are to be met bottom-up, but the design process is to be controlled in a
top-down manner. The idea is to design family members that are particularly
tailored to support specific application scenarios by sharing as many as possi-
ble system abstractions, i.e. reusable components. A highly distinct functional
hierarchy of “fine-grain sized” components is the outcome. The entire system
structure is a logical one in the sense that the design is hierarchical, and not its
implementation [17]. Realizing a program family by an object-oriented imple-
mentation may result in highly flexible and yet efficient system structures. But
this will be true only if both design and implementation follow an incremen-
tal approach [11]. Starting point must be a minimal subset of system functions
which undergoes a stepwise functional enrichment by minimal system exten-
sions. These enrichments can be turned into efficient programs by means of
implementation inheritance. Note that this does not necessarily hold with inter-
face inheritance. The point of problem is late binding of those methods which are
subject to subsequent specialization in derived classes. This concept may result
in overhead-prone implementations and entail very large memory footprints, es-
pecially in the case of deep class hierarchies. The decision for late binding must
be postponed as far as possible in the design and implementation of object-
oriented program families. As a consequence, functional enrichment for creating
new object-oriented abstractions of a program family favors implementation in-
heritance over interface inheritance. Interface inheritance is the right choice only
when the family-based design requires multiple implementations of the same in-
terface to coexist. In certain cases it is sensible for such kind of requirement to
be considered a non-functional property of object-oriented (operating) system
software. In order not to limit reusability of a class implementing that kind of
interface, the non-functional property of interface inheritance needs to be sepa-
rated properly.

2.2 Variabilty Management

By consequently following the family-based approach of software development,
highly customizable operating systems are feasable. Variant building, however,
is only a first step in the development process. Without being able to organize
and manage the many possible variants of an operating system family in an ade-
quate and user-friendly manner, this approach will be doomed to failure. Feature
modeling appears to be a promising way to tackle the variability management
problem. This technique is understood as “the activity of modeling the common
and the variable properties of concepts and their interdependencies and orga-
nizing them into a coherent model referred to as a feature model.” [12] Goal is
to come up with directives for and a first structure of a design of a system that
meets the requirements and constraints specified by the features. Common is
a graphical representation of the feature model in terms of a feature diagram.
The diagram is of tree-like structure (fig. 1), with the nodes referring to specific
feature categories. Four feature categories are defined: mandatory, optional, al-
ternative, and or. A feature diagram describes the options and constraints that

The Design of Application-Tailorable Operating System Product Lines 103

C

f1

f3 f4

f2

f5 f6

Legend

Fig. 1. Example of a Feature Diagram

shall exist within a system. It models the variable and fixed properties of a fam-
ily of programs which implement that system. The diagram shown in figure 1
describes a specific concept C, e.g. the process management subsystem of an
operating system. If concept C gets to be included in the final system configura-
tion, then any non-empty subset of features from the set {f1, f2} of or-features
is also included. The feature set with respect to C at this level of abstraction
is either {f1}, {f2}, or {f1, f2}. If feature f1 is present, one feature from the
set {f3, f4} of alternative features must be included. Thus, the feature set of f1
consists of either f3 or f4. If feature f2 is selected, mandatory feature f5 must
and optional feature f6 may be included in the final configuration. For f2, this
leads to the feature set {f5} or {f5, f6}. This technique allows for a compact and
precise specification of interdependencies of functional as well as non-functional
properties of fairly complex systems [12]. Basing on a tool which aids the con-
struction process of a feature model and supports the mapping of features to
implementations, automated generation of highly specialized operating systems
becomes possible [6].

2.3 Modularization of Non-functional Properties with AOP

Not in every case is it sensible to follow a development process that solely relies on
a universal family-based design and object-oriented implementation as described
above. Eminent problematic issues are the cross-cutting concerns given with many
non-functional properties. Trying to reflect these concerns in a hierarchical de-
sign may lead to an explosion of the resulting functional and/or class hierarchy.
For software maintenance reasons, a cross-cutting concern needs to be separated
from its points of action and implemented as a single module. When a specific fam-
ily member is going to be instantiated, all missing cross-cutting concerns will be

104 D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk

applied to the relevant software components. Referring to non-functional prop-
erties then may become a configuration matter. Automated configuration may
take place by having a software transformation tool in charge of interweaving the
program module representing a specific cross-cutting concern with all the pro-
grams that refer to the corresponding non-funtional property. This kind of final
customization of selected software components from a program family can be best
achieved using AOP [21]. In this setting, an aspect program implements a specific
cross-cutting concern. These programs take care of the manifestation of a partic-
ular non-functional property by describing code transformations that need to be
applied to selected components. The transformation process is performed by an
aspect weaver. AOP turns out to become a powerful paradigm in the design and
development of system software in general. Several publication show that AOP
provides benefits for the development of configurable infrastructure software in
the broad sense, namely middleware [10, 9, 37, 19, 28] and databases [28, 33] prod-
uct lines, as well as dynamically configurable web proxies by means of runtime
weaving [13]. Regarding operating systems, Coady et al. retroactively evaluated
the evolution of four partly non-functional OS concerns in the FreeBSD kernel
using the general-purpose AspectC language [8, 7]. It was shown that an aspect-
oriented implementation would have led to significantly better evolvability. Due to
missing tool support (namely a weaver), her study did cover only a relatively small
part of the kernel code base and no heavily crosscutting concerns such as tracing
or kernel diagnostics. Not a general-purpose AOP language, but an AOP-inspired
language of temporal logic was used by Åberg et al. to integrate the Bossa sched-
uler framework into the Linux kernel [3]. C4 uses AOP concepts to implement a
“semantic patch system” for the application of kernel patches [15].

3 Case Study of a Thread Abstraction Layer

PURE [5] is a family of operating systems targeted at the highly resource-
constrained domain of deeply embedded devices and available for a large number
of 8 and 16 bit processor platforms. A branch of the PURE family that provides
elementary process management functions is the thread abstraction layer(TAL).
This layer is a refinement of the original PURE threads package and serves for
various experimental purposes related to fine-grain (operating system) software
product line development. The following two subsections give a brief overview
about the concepts and techniques that were used to make PURE software ex-
tensible as well as contractible. First, excerpts from the TAL feature model are
discussed to exemplify the concept of variability management having been ap-
plied to PURE. Second, the functional hierarchy of TAL is presented to illustrate
some of the internals of the design and to give also an idea on what fine-grain
operating system software product line development means in PURE.

3.1 Feature Modeling

The TAL feature model aims at describing commonalities of as well as differences
between the various possible variants of a system software component commonly

The Design of Application-Tailorable Operating System Product Lines 105

thread

context saving

stack all registers stack non-volatile registers

stack space supply flux

Fig. 2. Thread concept. This TAL feature is made of a hierarchy of or-features covering
functions that save/restore a thread context (context saving), take care of expansion
directions and alignment restrictions of a stack (stack space supply), and manage a
thread of control of program execution (flux).

known as a threads package. Focus was on the deeply embedded systems domain.
Above all this means that the system design resulting from the feature model
must be minimal in any respect: each level of abstraction introduced need to
be a minimal extension to the minimal subset of system functions existing so
far. Figure 2 shows the three main subfeatures of the thread concept, which are
defined as follows:

context saving. Spans functions needed to save and restore a thread context.
A stack-based approach is assumed. The feature is constituted by two or-
features that differentiate between three combinations of context saving func-
tions. A TAL configuration may encompass functions to stack all and/or only
non-volatile CPU registers. The latter are a subset of the former and make
thread switching more lightweight (in execution time and memory space).

stack space supply. Provides fundamental stack management functions concerned
with allocation, alignment restrictions, and expansion direction (top down or
bottom up) of a stack.

flux. covers the functions needed to implement the flow of control represented
by a thread and its binding to program text. Figure 3 shows a refinement of
this subfeature.

As shown in figure 2, the TAL thread concept consists of three or-features.
Thus, an application is provided with seven configuration options at this level,
depending on the number of thread subfeatures selected. This is in line with
the idea of program families: PURE applications are not forced to go with all
TAL functions, but rather is given choices from which they may or may not
make their decisions. Heart of TAL is flux (fig. 3), which describes a hierarchy
of abstractions modeling a thread of control including its binding to program
text. The decisive idea is to postpone decisions on how to represent and manage
the context of a thread as far as possible. Figure 3 shows a feature hierarchy
which corresponds to an implementation that implies functional enrichment of a
minimal subset of threading functions. The flux subfeatures model the evolution
steps from flyweight to lightweight threads. Their meaning is as follows:

106 D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk

flux

control flow invocation

control flow exchange

context switching

function binding

implicit composite late

Fig. 3. Flux concept. The feature diagram models functional enrichment of thread
abstractions, starting from a simple run-to-completion mode of operation (control flow
invocation) and an optional binding of user-defined code to a thread (function binding).

control flow invocation. Describes the minimal subset of system functions needed
to instantiate and terminate a thread. The principle of operation of a thread
at this level of abstraction is run to completion. The spawning thread inherits
the processor state (stored by the working registers) to the spawned thread
and implicitly releases CPU control. Upon termination, the spawning thread
takes over the processor state again and receives back CPU control.

control flow exchange. A minimal system extension that allows for thread switch-
ing in a coroutine-like fashion. Thus, run to completion is no longer the only
principle of operation provided at this level of abstraction. Both threads, i.e.
spawner and spawnee, may resume each other by sharing the processor state
except the contents of the stack pointer register.

context switching. Another minimal system extension which adds functions to
save and restore the processor state of a thread. This abstraction requires the
context saving feature shown in figure 2. The key idea is that every thread
is responsible to manage its processor state on its own: the state needs to
be saved before resuming execution of another thread and will have to be
restored after having been resumed execution by some other thread. Thus,
no thread needs to know about the size and organization of the processor
state of another thread.

function binding. This flux subfeature models different ways of how to bind user-
defined functions to a thread. By default, the code executed by a thread always
is in-line with the basic block or scope that instantiated the thread. However,
if function binding is selected, the code to be executed by a thread may be
subject to (1) implicit binding using a default function, (2) composite binding
using a template function, or (3) late binding using a virtual function.

If flux is going to be selected, TAL comes at least with control flow invocation.
All other flux subfeatures are optional so that no application program of TAL

The Design of Application-Tailorable Operating System Product Lines 107

slot = label(); // remember current thread of control
split(flux); // spawn additional thread of control
if (slot != label()) { // did a control flow switch occur?

... // yes, spawnee takes on execution
latch(slot); // spawnee finishes and resumes spawner

} // spawnee never returns to here
... // no, spawner continues execution

Fig. 4. Flyweight thread instantiation (C-like). A new thread is spawned using
split(), which returns twice. In order to determine whether the spawner or the
spawnee returns, label() is used: the spawnee returns when label() after split()
delivers a value different from label() before split(). The spawnee returns first and
passes back CPU control to its spawner using latch().

will be forced to pay for functions that it does not need. In addition, the features
are organized in such a manner that the resulting implementations will follow
the incremental system design approach and, thus, appear as minimal system
extensions. To get an idea of how the minimal subset of TAL functions can be
used to instantiate threads that will operate according to run to completion,
see figure 4. Functions label(), split(), and latch() basically implement the
control flow invocation feature. The resulting assembly-level code generated from
this C fragment is shown in figure 5. TAL functions are implemented as inline
functions, mostly. The code sequence shown in figure 5 is semantically equivalent
to the code sequence of figure 4: it is the result of the compilation process using
the GNU C/C++ compiler. The two examples demonstrate what family-based
design of PURE actually implied, namely coming up with a large number of tiny
system functions. The motivation to start out with a minimal subset of threading
functions (as shown in figures 4 and 5) that only save/restore a very minimal

leal -4(%esp),%edx # slot = label()
pushl $1f # split(flux)
movl flux,%esp # " activate spawnee

1: # spawner resumes execution
leal -4(%esp),%eax # <aux> = label()
cmpl %eax,%edx # if (slot == <aux>)
je 2f # goto 2
... # spawnee takes on execution
movl %edx,%esp # latch(slot)
ret # " goto 1

2: ... # spawner continues execution

Fig. 5. Flyweight thread instantiation (x86-like). The example shows how run to com-
pletion is actually realized for the spawned thread: the spawner transforms into the
spawnee by assigning flux to the stack pointer register. The spawnee terminates by
(1) assigning the spawners stack pointer (slot) to the stack pointer register and (2)
restoring the spawners program counter (ret).

108 D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk

CPU

processor type

ARM AVR m68k ppc sparc x86

register access train

Fig. 6. CPU concept (excerpt). Mandatory feature processor type specifies the CPU
architecture that can be supported by a PURE family member. Optional feature reg-
ister access is root of a bunch of subfeatures related to processor state management.
Support for trap/interrupt handling is modeled by the optional feature train.

processor state consisting of program counter and stack pointer registers was
to have a compiler in charge of context switching. A compiler exactly knows
about the non-volatile processor state of a thread and that state may differ
from thread to thread. The idea was to be able to take advantage of compiler
pragmas that specify the size of the processor state to be saved/restored upon
thread switches in dependence on the actual scope where the thread switch takes
place.

Another important issue of TAL (and the encompassing operating system
kernel) is CPU management. Figure 6 shows an excerpt of the feature model
describing the CPU concept. Mandatory feature is the processor type, which

train

flange

function binding

interrupt synchronization

locking transparent

Fig. 7. Train concept (excerpt). Mandatory feature flange models the binding tech-
nique used to make trap/interrupt handlers physically known to the CPU. Basically,
this feature directly maps to the function binding feature of flux (fig. 3). Optional fea-
ture interrupt synchronization describes the alternatives for the coordination of event-
triggered activities in PURE. Either “hard synchronization” using interrupt locking
or interrupt transparent non-blocking “soft synchronization” (without relying on ded-
icated CPU instructions) is supported.

The Design of Application-Tailorable Operating System Product Lines 109

in turn consists of a number of alternative features. Each of these alternatives
stands for the processor platform that is supported by TAL. Usually, for a given
system configuration, only one target platform will be supported. The optional
feature register access describes abstractions provided to read and write the
registers of the CPU indicated by processor type. Register access functions are
implemented by means of operator overloading using a C++ class instance for
each of the registers provided by a particular CPU. An overloaded assignment
operator performs write access, while the overloaded type cast operator performs
read access. The operators are implemented as inline assembly functions. They
are used, e.g., to implement thread context management already in a high-level
and problem-oriented programming language such as C++. The third subfeature
of concept CPU models the art of trap/interrupt (train) handling for a selected
processor type. A refined feature model of train is shown in figure 7. In that
subtree, mandatory feature flange describes the kind of function binding in order
to make problem-oriented trap/interrupt handlers known to the CPU. This is
realized by letting train logically share the same binding techniques with concept
flux (see also fig. 3). A major part of train is made of interrupt synchronization,
which is an optional feature: not in every use case will interrupts raise race
conditions and, thus, need to be synchronized for coordination purposes. Two
alternatives are given:

1. Interrupt locking, i.e., interrupts are disabled and (re-) enabled to secure
critical code sections. This is the traditional case of coping with concurrency
issues due to hardware interrupts and is fairly easy to implement. However,
blocking of interrupts comes with the risk of loosing hardware events and,
thus, turns out not to be a good choice especially for embedded real-time
systems with high interrupt frequency.

2. Interrupt transparent synchronization [29], i.e., interrupts are never disabled
by an operating system kernel. This feature corresponds to a set of synchro-
nization abstractions that allow for interrupts at any time. Coordination is
achieved using a variant of non-blocking synchronization.

Interrupt transparent synchronization can be done with and without specific (e.g.
CAS-like) CPU instructions. As a consequence, the alternative feature trans-
parent consists of an ensemble of or-features, with each of these subfeatures
describing a specific synchronization technique.

Developing feature models to aid the design process of a family of operating
systems and for documentation purposes is one aspect. Using these models to
support the configuration and generation process of operating systems is another
aspect. With pure::variants [4] a feature-based configuration tool has been
developed that supports the workflow from the creation of a feature model up to
the automatic generation of user-customized operating systems for very specific
problem domains. The tool not only allows for creation but also verification of
feature models such that logically consistent system configurations will be the
outcome of the generation process.

110 D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk

spawn

beget

grant

top

new delete

ufa

clearstore

shift

latchcheck

setupbadge

splitlabel

store clear

yield

1

2

3

4

5

5*

6

½

all non−volatile

Fig. 8. Functional hierarchy of TAL. The levels serve the following purposes: 1 control
flow invocation, 2 control flow exchange, 3 context saving and stack space supply, 4 stack
space supply, 5 context switching, 5∗ function binding, 6 thread instantiation. Level 1

2
supports level 1 only: its functions came into existence with the design of check(),
which showed commonalities with the already existing split(). These commonalities
then became subject to factorization which led to badge() and setup().

3.2 Functional Hierarchy and Component View

The TAL feature model is turned into an implementation using a very fine-grain
incremental system design approach. Result of this process is a functional hier-
archy (fig. 8). Figure 8 makes explicit the levels of abstraction a TAL function
is assigned to. Level 5∗ is not really part of TAL, but rather of the application
program using TAL. This level stands for some user function abstraction (UFA)
that corresponds to the function binding feature of flux (fig. 3). In addition,
level 1

2 stands for a level of abstraction that resulted from a refinement step in
the design process: when level 2 was designed, one figured out commonalities
in the implementation of split() and check(), which then where factorized
out and led to the additional level. Level 2 takes care of control flow exchange,
levels 3 and 5 cover context saving and switching issues, while level 4 and func-
tion top() of level 3 turn the feature stack space supply into implementation.
Level 6 is responsible for thread instantiation. TAL offers a very high degree of
customization at the cost of a fairly complex internal structure. The structural
complexity becomes manageable for an expert using e.g. feature-modeling and

The Design of Application-Tailorable Operating System Product Lines 111

grant

TAL

laym
an

ufa

main

expert

shift

beget new

Fig. 9. Component view of TAL

configuration tools such as pure::variants. Nevertheless, a layman will be lost
for all the many puzzle bricks offered by TAL. For these sorts of customers, TAL
appears to be a black box that comes with a minimal export interface. Figure 9
shows this component view in some more detail. Actually, there are only three
“fallback functions” making up TAL to an easy to use threads package. These
functions are new() to allocate stack space for a thread, beget() to instan-
tiate a thread, and grant() to pass control between threads while maintaing
the processor state invariant for inactive threads. The user-defined code to be
executed by a thread (on behalf of beget()) comes with the UFA instance as
provided by the user itself. In fact, TAL is an open component [16] that provides
a basis for operating system product line development in the small, in partic-
ular for a process management subsystem. For the large case, TAL becomes a
component whose export interface hides the internal complexity from the user.
This way, a high degree of reusability is achieved not only for the expert but
also for the layman. Since the export interface is made of customizable system
functions, even the layman is given some options for specialization.

4 Aspect Orientation of Operating Systems

The approach discussed so far is not only suited to model functional relation-
ships between abstractions or members of operating system families, but also
non-functional ones. Being able to model non-functional interdependencies, how-
ever, is only one issue, another issue is to implement them in a modular way to
generally improve software maintenance [23, 25]. PURE proved that it must not
be a contradiction to come up with a highly modular operating system design
and implementation and at the same time keeping the many building blocks
manageable. Key to success was family-based design, feature modeling, and
aspect-oriented programming, as well as tool support. However, AOP came into
play at a fairly late point in time of the PURE development. It mainly served

112 D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk

re-engineering purposes of selected pieces of the entire PURE software base.
PURE is not an aspect-oriented operating system, but benefits from AOP in
various respects. PURE re-engineering in terms of AOP was considered a first
experiment and showed that it would pay to consider aspect orientation as a
central design issue being followed from the very beginning. With the PURE suc-
cessor CiAO1 [24, 25], we are now developing a new family of operating systems
that aims to achieve an even higher level of configurability. CiAO focuses on non-
functional properties of operating systems whereby these properties technically
appear as cross-cutting concerns which impair maintainability of a reasonable
large fraction of the system software. Emphasis is on the configuration of archi-
tectural features, i.e. to consider the duality of operating system structures [22]
as a non-functional system property.

4.1 Non-functional Properties Considered Harmful

Traditionally, operating system development is a field in which non-functional
properties are of fundamental relevance and imply a number of design decisions.
Examples of such properties are synchronization, protection, isolation, sharing,
and interaction. In general, these properties are fairly independent from the
actual application domain. They are domain unspecific and typical, e.g., for
general-purpose operating systems. Especially for embedded operating systems,
additional domain specific non-functional properties are of importance such as
energy, timeliness, and dependability. The term “non-functional” sometimes im-
plies fairly complex implementations in order to provide and enforce a certain
property. But this is not really the problem. Dependability is an example of
highly elaborated designs and implementations, while synchronization may re-
sult in very simple solutions (e.g., in case of interrupt locks). The problems with
non-functional properties are the possibly many (explicit/implicit) references to
their implementations spread across the software of the intrinsic functions of a
specific (sub-) system. It is a problem of program fragments repeatedly being
closely related to functional code for reflecting certain configuration decisions.
When being intermixed with the intrinsic functional implementation, these cross-
cutting concerns impair reusability to a vast extent. They link implementations
to applications, although the pure functional code may be highly independent
therefrom. Most non-functional properties are emergent properties. They are
neither visible in the code nor structure of single components, but “suddenly”
emerge from the orchestration of many components into a complete system.
Properties that manifest in the integrated system only are indeed cross-cutting,
as they result from certain (unknown) characteristics of every single component.
Due to their inherent emergence it is, however, not possible to tackle them by de-
composition techniques. They need to be understood holistically, that is, on the
global scope of software development. One could say they need to be addressed
by “holistic aspects”, meaning that the realization of non-functional concerns
does not cross-cut (just) the code, but the whole process of software develop-
ment. In a number of cases, program fragments representing the non-functional
1 CiAO is Aspect-Oriented

The Design of Application-Tailorable Operating System Product Lines 113

properties are as simple as conditional expressions or they solely wrap around
the respective function. In other cases, tons of such software prevents one from
realizing the gist of the matter. A first step in order to lessen the problems is
to cleanly separate non-functional properties by design: separation of concerns
need to be a must. Ideally, as a following step the code implementing or ref-
erencing these concerns should be automatically generated and inserted at the
respective places of the system software. Thus, at a fairly late point in time the
implementation of an intrinsic function gets adjusted for a specific configuration.

4.2 Separation of Cross-Cutting Concerns

Central topic of CiAO is to consequently isolate cross-cutting non-funtional prop-
erties both by design as well as by means of language support. CiAO strongly fol-
lows an aspect-oriented design and is implemented in AspectC++ [31], an
aspect-oriented extension to C++. As an idea sketch of AspectC++, a synchro-
nization aspect is being considered in the following. In CiAO, as was in PURE (and
is in almost any other operating system), synchronization is a typical cross-cutting
concern. Its implementation is separated from the functional code by means of
the AspectC++ pointcut concept. A pointcut is a set of points in the code (so
called join points), which are affected by the same cross-cutting concern. In As-
pectC++ these sets can be defined in a very flexible way by using a declarative lan-
guage consisting of predefined pointcut functions, wildcards for matching names,
and algebraic operations to combine pointcuts. The pointcut definition shown in
figure 10 enumerates the (non-preemptive) scheduling functions block(), ready
(Thread*), and yield(), each of which representing a critical section when being
reused in order to support preemptive mode of operation. Calls to these functions
need to be synchronized. In addition to the pointcut definitions, actions need to
be defined that are to be executed when any of the join points in the pointcut is
reached at run time. Any of these actions is called an advice. Figure 10 shows the
definition of the two actions needed to take care of synchronization of the criti-
cial scheduling functions. The first advice definition means that before the body
of any function described by critical() is executed, entrance to the critical sec-
tion is requested by calling enter(). Similarily the second advice causes the call on

pointcut critical() = execution("void block()") ||
execution("void ready(Thread*)") ||
execution("void yield()");

aspect Synchronization {
advice critical(): before() { enter(); }
advice critical(): after() { leave(); }

};

Fig. 10. Modularization of a non-functional property “synchronization” in the AOP
language AspectC++. The AspectC++ aspect weaver translates aspect into a C++
class. In addition, it looks for critical() join points in a given source code and, once
matched, inserts the advice code before/after them, accordingly.

114 D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk

Table 1. Memory footprint (in bytes, x86) of members of the PURE nucleus family

text data bss total
exclusive processor usage 434 0 0 434
interruptive mode of operation 812 64 392 1268
cooperative scheduling 1620 0 28 1648
non-preemptive scheduling 1671 0 28 1699
coordinative interrupt propagation 1882 8 416 2306
preemptive scheduling 3642 8 428 4062

leave() after the critical section is left. Both advice definitions are encapsulated
in a named modular unit, which is an aspect. Besides the advice definitions, aspects
can (similar to classes) store and manage state information, which is also acces-
sible by the advice code bodies. The AspectC++ compiler (resp. aspect weaver)
expands the advice code at the specified join points, it interweaves component
code and code that manifests a certain non-functional property. The two advice
functions enter() and leave() implement the interrupt synchronization feature
shown in figure 7, either by means of interrupt locking or in an interrupt transpar-
ent manner. Moreover, by using pure::variants, the synchronization aspect will
be implicitly applied when that feature is going to be selected during the configu-
ration process of the system software. That is to say, pure::variants automati-
cally calls the AspectC++ compiler with the synchronization aspect as additional
input when interrupt synchronization needs to be a feature of the resulting sys-
tem. The AOP approach was motivated by experiences having been made with
PURE. By turning the design of the PURE family into an object-oriented imple-
mentation using C++ and by enforcing domain-specific configuration decisions
with AOP on the basis of AspectC++, a highly efficient software product line
was the outcome. Table 1 shows some of the results, giving the memory footprints
of individual products of the nucleus family of PURE. In this example, the nu-
cleus member providing preemptive scheduling has been automatically generated
by (1) reusing the two branches “non-preemptive scheduling” and “coordinative
interrupt propagation” and (2) applying the synchronization aspect to that mix-
ing. Thus, a new family member was generated automatically from an already
existing system software product line by using AOP techniques. Non-preemptive
scheduling functions which are critical in a preemptive environment remain fully
reusable. Every single point of invocation of these functions is considered a join
point where synchronization code is automatically inserted in order to make pre-
emptive scheduling work.

5 Conclusion

Developing and maintaining software product lines of (embedded) operating sys-
tems largely benefits from aspect-oriented programming. By relying on an aspect
language such as AspectC++, many non-functional properties can be expressed
as aspects and, thus, separated from functional code. This significantly improves

The Design of Application-Tailorable Operating System Product Lines 115

reusability of that code. Typical cases of domain unspecific non-functional prop-
erties of an operating system are synchronization, protection, isolation, and shar-
ing. For the domain of embedded systems, non-functional properties such as
energy, timeliness, and dependability additionally need to be taken into account.
An aspect weaver will take care of interweaving aspect code with functional code.
Application of such a tool depends on configuration decisions related to the spe-
cific problem domain for which a specialized system software solution is going to
be created. By considering the aspect weaver an ingredient part of an operating
system workbench that supports feature-based configuration (e.g., by means of
tools such as pure::variants), giving functional code non-functional properties
becomes an automated process. The PURE development shows that design and
implementation of highly reusable and yet specialized operating system abstrac-
tions or functions must not be a contradiction in terms. Key to success was to
understand an operating system as a software product line. The outcome was a
solution that scales with the demands of many embedded systems. As indicated
by the TAL case study, PURE demonstrates that feature-based development of
an operating system family is a very promising approach in order to master the
increasing functional complexity of embedded systems in spite of utmost resource
scarceness. AspectC++ evolved as a logical consequence from the PURE devel-
opment and mainly was applied to selected PURE components in the course of
re-engineering. With CiAO, the PURE successor, an aspect-oriented operating
system is being developed now in which aspect orientation (and in particular
AspectC++) plays the central role from the very beginning. Goal is to come
up with an aspect-oriented operating system that, on the one hand, fulfills the
many very specific requirements of deeply embedded systems and, on the other
hand, improves reusability as well as maintainability of the respective system
software better than PURE was able to do.

References

1. eCos homepage. http://ecos.sourceware.org/.
2. OSEK/VDX standard. http://www.osek-vdx.org/.
3. R. A. Åberg, J. L. Lawall, M. Südholt, G. Muller, and A.-F. L. Meur. On the

automatic evolution of an os kernel using temporal logic and aop. In 18th IEEE Int.
Conf. on Automated Software Engineering (ASE ’03), pages 196–204, Montreal,
Canada, Mar. 2003. IEEE.

4. D. Beuche. Variant management with pure::variants. Technical report, pure-
systems GmbH, 2003. http://www.pure-systems.com/.

5. D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-Preikschat, O. Spinczyk,
and U. Spinczyk. The PURE family of object-oriented operating systems for deeply
embedded systems. In 2nd IEEE Int. Symp. on OO Real-Time Distributed Com-
puting (ISORC ’99), pages 45–53, St Malo, France, May 1999.

6. D. Beuche, O. Spinczyk, and W. Schröder-Preikschat. Fine-grained application-
specific customization for embedded software. In Proceedings of the International
IFIP TC10 Workshop on Distributed and Parallel Embedded Systems (DIPES
2002), pages 141–151, Montreal, Canada, Aug. 2002. Kluwer Academic Publishers,
ISBN 0-140207156-6.

116 D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk

7. Y. Coady and G. Kiczales. Back to the future: A retroactive study of aspect
evolution in operating system code. In M. Akşit, editor, 2nd Int. Conf. on Aspect-
Oriented Software Development (AOSD ’03), pages 50–59, Boston, MA, USA, Mar.
2003. ACM.

8. Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve the
modularity of path-specific customization in operating system code. In ESEC/FSE
’01, 2001.

9. A. Colyer and A. Clement. Large-scale AOSD for middleware. In K. Lieberherr,
editor, 3rd Int. Conf. on Aspect-Oriented Software Development (AOSD ’04), pages
56–65, Lancaster, UK, Mar. 2004. ACM.

10. A. Colyer, A. Clement, R. Bodkin, and J. Hugunin. Using AspectJ for component
integration in middleware. In 18th ACM Conf. on OOP, Systems, Languages, and
Applications (OOPSLA ’03), pages 339–344, New York, NY, USA, 2003. ACM.

11. J. Cordsen and W. Schröder-Preikschat. Object-Oriented Operating System Design
and theRevival of Program Families. In 2nd Int.W’shop onObjectOrientation inOp-
erating Systems (I-WOOOS ’91), pages 24–28, Palo Alto, CA, October 17–18, 1991.

12. K. Czarnecki and U. W. Eisenecker. Generative Programming. Methods, Tools and
Applications. AW, May 2000.

13. M. Devillechaise, J. Menaud, G. Muller, and J. Lawall. Web cache prefetching as
an aspect: Towards a dynamic-weaving based solution. In M. Akşit, editor, 2nd
Int. Conf. on Aspect-Oriented Software Development (AOSD ’03), pages 110–119,
Boston, MA, USA, Mar. 2003. ACM.

14. K. Driesen and U. Hölzle. The direct cost of virtual function calls in C++. In 11th
ACM Conf. on OOP, Systems, Languages, and Applications (OOPSLA ’96), Oct.
1996.

15. M. Fiuczynski, R. Grimm, Y. Coady, and D. Walker. patch (1) considered harmful.
In 10th W’shop on Hot Topics in Operating Systems (HotOS ’05). USENIX, 2005.

16. A. Gal, W. Schröder-Preikschat, and O. Spinczyk. Open components. In Proceed-
ings of the First OOPSLA Workshop on Language Mechanisms for Programming
Software Components, pages 75–78, Tampa, Florida, Oct. 2001.

17. A. N. Habermann, L. Flon, and L. Cooprider. Modularization and Hierarchy in a
Family of Operating Systems. CACM, 19(5):266–272, 1976.

18. W. Harrison and H. Ossher. Subject-oriented programming—a critique of pure ob-
jects. In 8th ACM Conf. on OOP, Systems, Languages, and Applications (OOPSLA
’93), pages 411–428, Sept. 1993.

19. F. Hunleth and R. Cytron. Footprint and feature management using aspect-
oriented programming techniques. In 2002 Joint LCTES & SCOPES Conferences
(LCTES/SCOPES ’02), pages 38–45, Berlin, Germany, June 2002. ACM.

20. J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile
networking for ”smart dust”. In International Conference on Mobile Computing
and Networking (MOBICOM ’99), pages 271–278, 1999.

21. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,
11th Eur. Conf. on OOP (ECOOP ’97), volume 1241 of LNCS, pages 220–242.
Springer, June 1997.

22. H. C. Lauer and R. M. Needham. On the duality of operating system structures.
ACM OSR, 13(2):3–19, Apr. 1979.

23. D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk. Functional and non-
functional properties in a family of embedded operating systems. In 10th IEEE Int.
W’shop on Object-oriented Real-time Dependable Systems (WORDS ’05), pages
413–420, Sedona, AZ, USA, Feb. 2005.

The Design of Application-Tailorable Operating System Product Lines 117

24. D. Lohmann and O. Spinczyk. Architecture-Neutral Operating System Compo-
nents. 23rd ACM Symp. on OS Principles (SOSP ’03), Oct. 2003. WiP presentation.

25. D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat. On the configuration of
non-functional properties in operating system product lines. In 4th AOSD W’shop
on Aspects, Components and Patterns for Infrastructure Software (AOSD-ACP4IS
’05), pages 19–25, Chicago, IL, USA, Mar. 2005. Northeastern University, Boston
(NU-CCIS-05-03).

26. S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. MIT Press, Cambridge, MA, USA, 1993.

27. D. L. Parnas. On the design and development of program families. IEEE TOSE,
SE-2(1):1–9, Mar. 1976.

28. A. Rashid and N. Leidenfrost. Supporting flexible object database evolution with
aspects. In G. Karsai and E. Visser, editors, 3rd Int. Conf. on Generative Pro-
gramming and Component Engineering (GPCE ’04), volume 3286 of LNCS, pages
75–94. Springer, Oct. 2004.

29. F. Schön, W. Schröder-Preikschat, O. Spinczyk, and U. Spinczyk. On interrupt-
transparent synchronization in an embedded object-oriented operating system. In
3rd IEEE Int. Symp. on OO Real-Time Distributed Computing (ISORC ’00), pages
270–277, Newport Beach, CA, USA, Mar. 2000.

30. O. Spinczyk and D. Lohmann. Using AOP to develop architecture-neutral op-
erating system components. In 11th SIGOPS European W’shop, pages 188–192,
Leuven, Belgium, Sept. 2004. ACM.

31. O. Spinczyk, D. Lohmann, and M. Urban. Advances in AOP with AspectC++.
In H. Fujita and M. Mejri, editors, New Trends in Software Methodologies, Tools
and Techniques (SoMeT ’05), number 129 in Frontiers in Artificial Intelligence and
Applications, pages 33–53, Tokyo, Japan, Sept. 2005. IOS Press.

32. D. Tennenhouse. Proactive computing. CACM, pages 43–45, May 2000.
33. A. Tešanović, K. Sheng, and J. Hansson. Application-tailored database systems:

a case of aspects in an embedded database. In 8th Int. Database Engineering and
Applications Symp. (IDEAS ’04), Coimbra, Portugal, July 2004. IEEE.

34. C. Walls. The Perfect RTOS, 2004. embedded world 2004.
35. M. Weiser. The computer for the 21st centrury. Scientific American, 265(3):94–104,

1991.
36. D. M. Weiss and C. T. R. Lai. Software Product-Line Engineering: A Family-Based

Software Development Process. Addison-Wesley, 1999.
37. C. Zhang and H.-A. Jacobsen. Quantifying aspects in middleware platforms. In 2nd

Int. Conf. on Aspect-Oriented Software Development (AOSD ’03), pages 130–139,
New York, NY, USA, 2003. ACM Press.

Bringing Ease and Adaptability to MPSoC
Software Design: A Component-Based Approach

Ali Erdem Özcan1, Sébastien Jean2, and Jean-Bernard Stefani2

1 Advanced Technology Lab. STMicroelectronics
Ali-Erdem.Ozcan@st.com

2 SARDES Project, INRIA Rhône-Alpes
Name.Surname@inrialpes.fr

Abstract. Multi-Processor Systems-on-Chips (MPSoCs) gather multi-
ple processors and hardware accelerators in a single chip to meet the
performance and energy consumption requirements of mobile devices.
To follow the rapid evolution of such applications, the MPSoC commu-
nity need flexible and programmable platforms intended to be diverted
to many use cases, and hence consider definitely the software as one of
the main aspects of the system design. To deal with an ever growing com-
plexity when designing for such heterogeneous and evolving platforms,
software developers have to adopt a novel software design methodology
that encourages the software customization through modularity, reuse
and module assembly to build systems and applications. Component-
based Software Engineering (CBSE), enabling software customization
by adding, removing and substituting components seems to be adequate
to reach that goal. We investigate this area while developing Think, a
lightweight implementation of the Fractal component model, which ap-
plies CBSE principles down to the lowest software layer: the operating
system. Think allows various kinds of communication semantics from
simple method invocations to RPC, recursive component composition,
and comes with retargetable configuration and specification tools. In
this paper, we show how Think can make flexible and customizable the
operating system and application design for MPSoC a reality.

1 Introduction

In the late sixties, Gordon Moore predicted that integrated circuits complexity
would grow exponentially while circuits size would be reduced similarly [1]. The
evolution of semi-conductors technology has turned this prediction into a law,
and it is nowadays possible to integrate hundreds of millions of transistor on
a single chip. Circuits known as Multi-Processor System-on-Chips (MPSoCs)
now embed entire applications like multimedia codecs, data cyphering, . . . The
word system is in this case justified by the fact that such circuits gather several
interacting components like processing units, memories, I/O peripherals, . . . In
a not so distant future, the 50 nm lithography technology should allow in early
2010 to integrate billions of transistors working at a frequency approaching tens

G. Barthe et al. (Eds.): CASSIS 2005, LNCS 3956, pp. 118–137, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Bringing Ease and Adaptability to MPSoC Software Design 119

of GHz. However, reaching this performance level will increase design complexity.
As the conception of a new MPSoC is long and costly, today’s best practice tends
to the design of long-life multi-purpose platforms that can be reused for several
applications. Such generic platforms give a more important place to software
than before in order to increase customizability and reuse. In this context, using
component-based software engineering techniques seems to be one of the best
ways for rapid application development.

In this paper, we demonstrate the benefits of using component-based technol-
ogy to design MPSoC software. We provide software to designers a methodology
and associated tools to easily develop (and retarget if needed) both operating
system and applications for such platforms. Our approach is based on Fractal
component model, and one of its implementation called Think that focuses on
operating system design. We show how Fractal features fulfill most MPSoCs soft-
ware customization and configuration requirements. We also present how Think
has been extended in order to make it suitable for MPSoCs software design,
particularly to support parallel programming.

Section 2 replaces our work within its context by presenting MPSoCs tech-
nology, applications and design challenges. Section 3 follows with a presentation
of component-based software engineering principles as well as a relevant state-of-
the-art of its application to operating system design, and finishes by underlining
the shape of the appropriate component technology. Then, Section 4 gives an
in-depth view of the component model on which we based our work. Section 5
presents how this technology can be used to efficiently design MPSoCs software,
focusing on the way a C implementation called Think has been extended in or-
der to take into account the constraints of MPSoCs. Section 6 is dedicated to
evaluations while Section 7 concludes and introduces future work.

2 MPSoCs Technology, Applications and Software Design
Challenges

In this section, we first present some basic design issues related to MPSoCs,
focusing on architecture and applications, to finally point out the software design
challenges for these platforms.

2.1 Technology and Applications

Digital convergence, bringing multimedia and communications to end-users, has
lead to a new generation of integrated circuits able to satisfy the constraints of
modern home entertainment and mobile applications. Home appliances and mo-
bile multimedia devices need important computational power for intensive use of
multimedia codecs, digital transmission, cryptography, and so on, combined with
low energy budget and integration cost constraints. Circuit designers answered to
this need with System-on-Chips (SoCs). In this solution, the computational power
comes from customized hardware (Application Specific Integrated Circuits), sin-
gle chip integration brings low energy consumption while low fabrication cost be-
comes possible with mass production (even if SoC design is highly costly).

120 A.E. Özcan, S. Jean, and J.-B. Stefani

Vis-a-vis the increasing number of applications that must be supported, SoCs
became more and more programmable by integrating multiple-processors instead
of specific hardware accelerators which resulted the emergence of Multi-Processor
Systems-on-Chips (MPSoCs). MPSoCs can be seen as reusable multi-purpose
programmable platforms where on-chip resources are optimized for a generic
kind of application but many of its features are handled by additional software.
Hence, MPSoCs are no longer completely designed by hardware designers but
also by software designers who are in charge of customizing generic platforms
according to the applications that are going to be hosted.

Basically, MPSoCs are characterized by the gathering on a single silicon die
of several processors and hardware accelerators (usually about ten) interacting
via advanced communication links. Embedded processing units, from Digital Sig-
nal Processor (DSP) to Very Large Instruction Word (VLIW) parallel processor,
are highly heterogeneous. They can manage their own memory or cache (coher-
ently shared among units or stand-alone) and usually share an external memory.
MPSoCs also embed various I/O peripherals like wireless communication devices,
network interfaces and so on. To make all these units work together efficiently, dif-
ferent communication paradigms can be deployed from classical buses to packet-
switched communication mediums, mostly called Network-on-Chip (NoC).

2.2 Software Design Challenges

Since their birth, MPSoCs have been used to host applications that need effi-
ciency in terms of computation, energy consumption and space footprint. Today,
MPSoC designers face challenges related to four crucial factors: diversity, time-
to-market, cost and computation performance.

The Evolution Factor. Today’s markets have become highly fragmented and
often unpredictable. Furthermore, the multiple standards that rule multime-
dia and communications do not keep evolving. Figure 1 gives an example of
short-term evolutions that should occur in communication and multimedia
areas.

The Time-to-Market Factor. The traditional MPSoC design cycle typically
requires two years between freezing the product’s specification and starting

MPEGMPEG--44

H.263H.263
+ H.264+ H.264

+ WMV 9+ WMV 9
SoftRadioSoftRadio

SW evolution (time)

HW evolution (time)

Fig. 1. Hardware/software short-term evolution examples for MPSoC platforms

Bringing Ease and Adaptability to MPSoC Software Design 121

the volume production, while the equipment manufacturers face increasing
pressures from their own markets to introduce new models every year or even
more frequently. It is thus necessary, particularly considering the evolution
factor, that silicon manufacturers reduce as most as possible the time-to-
market.

The Cost Factor. On one hand, porting an existing chip design from one
technology generation to the next, without making any other change, costs
around a million dollars. On the other hand, designing a new chip or enhanc-
ing a previous design can require huger expenses. Even if silicon manufactur-
ers succeed in facing the time-to-market factor, it does not seem reasonable
to switch to a new chip design at every standard evolution.

The Computational Performance Factor. The last key challenge consists
at using as efficiently as possible the computational capacities of MPSoCs.
As the number of processing units increases according to Moore’s law, it
becomes necessary to find ways to also increase the level of parallelism when
running applications. This leads to consider MPSoCs as almost traditional
distributed systems.

Above mentioned challenges influence naturally the ongoing efforts that are
centered around the design of adequate operating systems which would let ap-
plication designers use as efficiently as possible the underlying hardware while
supporting several application evolutions. Beside their classical role which is the
reliable and efficient management of hardware resources for hosted applications,
the embedded operating systems for MPSoC must offer three main capabilities:
customizability, reconfigurability and distribution-awareness.

Customizability. The operating system must be tailored respecting the appli-
cation needs to provide high efficiency. For example, if an application does
not need multi-threading nor networking, these features should be removed
from the operating system in order to increase the performance.

Reconfigurability. Because these general-purpose platforms are designed to
host various applications during their life-cycle, the underlying operating
system must be reconfigurable for adapting its services to application needs.

Distribution-awareness. Vis-a-vis the increasing number of processing ele-
ments embedded into MPSoCs, application distribution will become an im-
portant bottleneck in the future. This means that MPSoC operating systems
should be designed as distributed systems, allowing various parallelism par-
adigms (Symmetrical Multi-Processor, distributed memory pipelining, and
so on).

Beside these features, one must have a larger view of software design for MP-
SoCs. It is indeed necessary to have customizable and reconfigurable distributed
operating systems, it is also much more convenient to have a methodology that
allows to design both operating systems and applications in the same way and
to easily port the whole set from one platform to another.

In the following, we present the basis of our approach to ease MPSoCs
software design. This approach relies on component-based software engineering

122 A.E. Özcan, S. Jean, and J.-B. Stefani

principles and offers to software designers a development methodology and an
adequate toolset for building customized and reconfigurable operating systems
and applications.

3 Component-Based Software Engineering for Operating
System Design

This Section reminds component-based software engineering principles, and
shows how they can help facing the software design challenges for MPSoCs.

3.1 Component-Based Software Engineering Principles

Components can be considered as a step beyond objects principles, while ever
questing for more reusability. As Szyperski stated in [2], components can be seen
as software bricks with well defined frontiers which let third parties to compose
applications respecting their own needs.

From the outside, a component is only seen as a black box through the set of
interfaces that it exposes (which are expressing a contract). A component is an
independent unit of software that incarnates the grain of deployment and com-
position: a component-based application is made of an assembly of components
where each one is deployed independently from each other. In addition to objects
that specifies the services that they provide through interfaces, components spec-
ifies also by the same way the services that they require. Thus, components can
provide and require multiple interfaces. Components need to be connected for in-
teracting. Such a communication link that connects the client interface of a com-
ponent to a server interface of another is usually called a binding or a connector.
Since components hide their implementation through interfaces, they can easily
be substituted by other components that provide the same services, even at run-
time. Components are often related to the separation of concerns principle, which
argues that functional aspects (application logic) must be defined and managed
independently of non-functional ones (security, persistency, transactions, . . .).

Component-based software engineering aims at providing a methodology and
tools to take benefits of component technology. First, component models define
component’s structures, lifecycles, interaction methods and composition rules.
Several component models are proposed by academic and industrial actors to
satisfy different application needs. Among them, the most known ones are CCM
[4] or EJB [5], and Microsoft’s COM component model. Component models can
also be characterized by their recursive or reflective behavior. A recursive compo-
nent model (in opposition to a flat one) is able to consider component assemblies
as components, allowing to hide their fine/coarse grain while managing them in
the same way. Finally, a reflective component model is able to have its self-vision,
and to act on it. Reflectivity is an intrinsic requirement for reconfiguration.

Second, implementation frameworks let programmers to build software that
is conform to a given component model using a given implementation language.
For example, Fractal component model [3] has two main implementations which
are Julia [15] (for Java) and Think [16] (for C/Assembly).

Bringing Ease and Adaptability to MPSoC Software Design 123

Finally, some component composition tools such as Architecture Description
Languages goes with some models for providing to programmers the architectural
view of component-based softwares. ADLs, whose [8] presents a survey, are not
only powerful tools to express the software structure (what set of components
makes the application, how components are bound), but also deployment and
configuration elements where components are instantiated and the packages can
be found.

3.2 Component-Based Software Engineering Applied to MPSoCs
Software Design

In the last ten years, many academic and industrial research efforts have been
concentrated on applying component-based software engineering principles to
operating system design [9]. We present below the most significants of them.

Choices. [10] is an object-oriented, customizable operating system whose main
goal is to allow users to easily optimize and adapt the system for specific appli-
cation behaviors and workloads. Its design consists in a hierarchy of frameworks
made of classes representing the system entities that can be configured to per-
form different roles. Customization is achieved by subclassing and by overriding
methods. Regarding the configurability and composition, Choices provides an
interactive graphical tool, OS View, which allows both system and user-level
services to be dynamically reconfigured, customized, and evaluated. Reconfigu-
ration is here limited to the loading of new operating system classes.

OS-Kit. [11] is a domain-specific set of software components intended to facil-
itate the construction of standalone systems on Intel x86 hardware. To provide
usability, OS-Kit adopted a subset of COM as the basic framework allowing
components to interact with each other efficiently (but without any protection)
through well-defined interfaces. Composition is left solely to the kernel devel-
oper; there is no tool to help with. The OS-Kit is essentially a collection of code
segments that must be integrated and connected manually by a third party. This
system does not focus on embedded systems neither supports reconfiguration.

Pure. [12] was developed to offer an operating system tailored to the appli-
cation, in the context of deeply embedded systems. Components are herein
arranged in a structure made of a nucleus and an extension. The nucleus is
responsible for the implementation of a minimal subset of system functions for
the scheduling of interrupts and threads. Features that represent some kind of
extension, called minimal system extensions, are added to the system in the nu-
cleus extension. PURE comes with tools that let users specify their needs and
requirements for the customized system, using an annotation language to provide
the necessary informations such as dependency and attributes and to help the
generation tool to evaluate and choose the right building units for combination.
The result of the configuration process is a kind of makefile that produces the
desired system. Pure does not support reconfiguration.

124 A.E. Özcan, S. Jean, and J.-B. Stefani

Pebble. [13] is designed to be an efficient application-specific operating system
and to support component-based applications. As an operating system, it adopts
a microkernel architecture with a minimal privileged mode nucleus that is only
responsible for switching between protection domains ensuring the code safety.
The functionality of the operating system is provided by user-level operating
system components (servers) that can be dynamically replaced, augmented, or
layered. The programming model is client/server; client components (applica-
tions) request services from system components (servers). Based on a system
description, Pebble includes no composition tool to provide the construction of
the system. The Pebble kernel has a small footprint (nearly 560 kB of mem-
ory usage) which turns it appropriate for various embedded systems. However,
like Choices, Pebble provides reconfiguration only through the loading of new
services.

All these previous examples of component-based operating systems have cer-
tain limitations with regards to requirements stated for MPSoCs. First, they all
need core runtime functions in order to execute components, mainly an hardware
abstraction layer and some convenient abstractions like processes, protection and
communication mechanisms. MPSoC software needs, much more than elsewhere,
a high level of customizability. There is no place for classical software abstrac-
tion levels that are imposed to programmers. Second, few of these operating
systems provide dynamic reconfiguration support, and none allows the substitu-
tion/removal of components neither supports distribution. Finally, none of these
propositions offers a homogeneous development methodology that can respond
to both operating system and application programming.

We present below our vision on the key challenges and required features of
component technology to satisfy the needs of software design for MPSoCs such
as we identified in section 2.

Software customization. One of the main elements for customization is a de-
velopment methodology that enables the component assembly. This feature
can be enhanced by an ADL and adequate code generation tools.

Reconfiguration. In a component based system, (re)configuration units are
components. Reflexivity is a key concept for the dynamic reconfiguration
since it provides the possibility to introspect and to intercept the system on-
the-fly. Another key mechanism is flexible bindings whose boundaries can be
dynamically changed in order to substitute a component by another. All of
these mechanisms can be enforced with a high-level description tool such as
a dynamic ADL.

Distributed Multi-Processor System. Components are also the units of dis-
tribution and deployment. Flexible bindings are the key aspect of a distribu-
tion framework for supporting remote interface invocations transparently to
both client and server sides. Finally, high level distribution constructs can be
supported by the ADL and its code generation tool chain to be able to specify
distributed systems.

In the following, we present our approach for MPSoCs software design. We
first introduce the component model we have adopted, called Fractal. Fractal

Bringing Ease and Adaptability to MPSoC Software Design 125

encloses most of the properties that are required to reach our goal: reflexivity,
flexible bindings, ADL-based configurability. We then show how this component
model can be implemented in the context of MPSoCs and what tools can be
provided to alleviate software designers’ burden.

4 Fractal Component Model Principles

We based our work on Fractal [14], a last generation and very flexible compo-
nent model which has been defined for building highly configurable systems and
applications. It is founded on a reduced set of concepts: components, interfaces
and bindings. In Fractal, components are runtime entities that incarnate encap-
sulation, configuration and composition units. Components interact with other
components via their client and server interfaces. Server interfaces give access
to functionalities provided by components while client interfaces enable compo-
nents to invoke required services on other components. Since the interfaces are
the unique access points of components, bindings are needed to link them. In
Fractal, bindings can implement arbitrary communication protocols.

Fractal reveals many original aspects in comparison to other component mod-
els. First, Fractal is neutral against programming languages and can thus lead
to a very large number of implementations targeting different application con-
texts. Second, in opposition to mostly well-known component-based environ-
ments, Fractal does not rely on any system nor runtime services for executing
components. Hence, it is possible to use Fractal components at the lowest soft-
ware level, even within the operating system. We enumerate below some signifi-
cant novelties of Fractal.

4.1 Recursive Composition and Component Sharing

As illustrated on Figure 2, Fractal distinguishes two kinds of components which
are primitive and composite components. Primitive components encapsulate
functional code. Composite components are created by the composition of other
components, either primitives or composites. Every Fractal system results in a
top-level component composed by an arbitrary number of subcomponents. Since
subcomponents themselves can be composite components, a recursive composi-
tion feature is enabled. This recursion ends with primitive components. By this
way, arbitrary levels can be achieved to model hierarchical levels of abstraction,
reuse, control, composition and so on.

In Fractal, a component instance can be shared by multiple composite compo-
nents. As a result, all these composites’ subcomponents can be directly bound to
the shared component, without any indirection. This original feature is very useful
to model shared resources such as a memory allocator of an operating system.

4.2 Separation of Concerns

Fractal defines two kinds of interfaces for distinguishing the control and func-
tional concerns of components. (i) Functional interfaces are used to expose the

126 A.E. Özcan, S. Jean, and J.-B. Stefani

C1 C2

C4
content

membrane

binding

client interface

control interface

functional interface

server interface

C3

C5

Fig. 2. Fractal components

services provided by a component (server interfaces) or to invoke required op-
erations (client interfaces) on other components. On the other hand, (ii) con-
trol interfaces embody the control behavior of a component. This separation
of interface natures results into the division of component structure into two
parts. While the content of a component implements the functional interfaces,
the membrane implements the control interfaces. The membrane is in charge
of providing arbitrary control actions through control interfaces providing in-
trospection and/or modification of the internal structure and the behavior of
components. One can notice that, in the case of composite components, the con-
tent is implemented by a set of other components. Both primitive and composite
components have membranes that can implement an arbitrary number of control
interfaces with generic or specific behaviors.

Fractal support runtime reflection in the sense that components can pro-
vide some controller interfaces that give information and manipulation access
on their structural and behavioral features. Fractal specifies an extensible and
also reducible set of control interfaces. These interfaces are :

Binding controller: If a component needs dynamic bindings and unbindings
(i.e. case of reconfiguration) of some server interfaces to its client interfaces,
it provides the Binding Controller interface. The implementation of this
interface can vary with regards to components’ needs. For instance, one can
set up a counter when a binding occurs in order to trace further clients’
invocations.

Content controller: Composite components can provide the Content Con-
troller interface for listing, adding and removing subcomponents in their
contents. This interface is particularly required for dynamic reconfiguration
support since it provides introspection and possibility of manipulation of the
internal structure of a component.

Lifecycle controller: A component can provide via the Lifecycle Controller
interface some control over its lifecycle phases (starting/holding/stopping
components). This interface is also useful for capturing a quiescent state of
components that are subject of reconfiguration.

Bringing Ease and Adaptability to MPSoC Software Design 127

Attribute controller: A component can give access to its attributes via getter
and setter operations via the Attribute Controller interface.

4.3 Flexible Bindings

Fractal does not make any assumption on communication protocols for com-
ponent interactions. Thanks to this flexibility, any interaction semantics can be
implemented within bindings. In its simplest form, a binding can be implemented
as a memory pointer that refers to the server interface (in this case, the interac-
tion is achieved by a simple function invocation). Bindings can also encompass
more complex communication semantics such as RPC or system call or even data
streaming. In these cases, bindings are also modeled with components (primitive
or composite).

4.4 Architecture Description Language Support

Fractal allows to capture the architectural view of software through the use
of an extensible architecture description language. This ADL offers high-level
constructs for specifying the components in terms of their content, interfaces,
attributes and interconnections. As the Fractal ADL is extensible, software de-
signers can add new constructs into component descriptions to satisfy specific
needs.

5 MPSoCs Software Design with Think

Fractal is neutral with regards to programming language in which it is imple-
mented. Among its several implementations, Think is the one that allows Fractal
programming in C. Even if it is originally designed for building component-based
operating systems, we believe that it has good foundations to also be used for
application programming especially in the context of highly specialized embed-
ded software. Think framework is made of three main elements: a programming
model mapped on standard C language, a complete compilation tool-chain based
on the use of both IDL and ADL, and finally, a library of components that can
be used to build multi-processor system and application software.

The work that we describe in this paper is an extension of the open source
repository of Think project [16] that contains additional features for MPSoC
software programming. Between others, we contributed to Think with a novel
programming guide that eases component implementation and gives some opti-
mization perspectives. We also extended the compilation chain and the compo-
nent library for building distributed operating systems and applications.

5.1 Think Programming Environment

Think’s programming environment involves the use of three different languages,
dedicated to define components interfaces (Think IDL), to give their implemen-
tation (ANSI C + guidelines), and to assemble them (Think ADL) in order to

128 A.E. Özcan, S. Jean, and J.-B. Stefani

build an entire application. We describe hereafter, using the simple example of
an ”hello world” kernel1, how these elements are jointly used to easily produce
an ad’hoc kernel and application from scratch.

Interface Description Language. In order to describe interfaces, Think pro-
vides an IDL whose syntax is closer to the one used to define Java’s interfaces
(with few types and keywords restrictions). Think IDL considers basic types of
Java (e.g. int, short, char), enables the construction of complex types as others
interfaces and has package support.

The benefit of using such an IDL is first to have a neutral language for
enabling multiple back-end implementation languages. Second, such a strongly
typed language enables some type-based verifications at compile-time that C lan-
guage does not allow. Finally, well-defined interfaces allow automatic generation
of interaction adapters, such as stubs and skeletons for remote communications
between components.

The following code sample illustrates the description of our example’s Console
interface. This interface makes part of the video.api package and provides two
methods that respectively display a character or a string on the console media.

package video.api ;
public interface Console {

void putC(char c) ;
void putString(string C) ;

}

Architecture Description. A little bit differentiated from Fractal ADL which
is XML-based, this language adopts a Java-like syntax and supports most of the
issues that are specified by Fractal.

As illustrated in Figure 3, Think ADL provides two component declaration
constructs for primitive and composite components. As mentioned in section 4.1
both types of components have an arbitrary number of provided (server) and re-
quired (client) interfaces. Each interface is declared by a reference to its type and
the assignment of a name. In the case of a primitive component (Figure 3.a), the
implementation is done in C language, thus the implementation file should be re-
ferred. In the case of composite components (Figure 3.c, 3.d), the content is con-
stituted by subcomponents. Hence, the composite construct allows subcomponent
declarations that associate a name to each instance of subcomponent. For conve-
nience reasons, programmers have choice between referring a component type or
a real component when they declare subcomponents (Figure 3.c).

The ”=” operator is used to refer a real component declaration while the
”:” operator is used to refer a component type (Figure 3.b). In the case of a
component type reference, one must overload this reference by a real component
declaration at another level of description (Figure 3.d). The kind of subcompo-
nent declaration is very useful for creating reusable composite declarations that
will be used for example to describe later some platform specific declarations.
By this way, the concrete implementation of the component can differ according
to target hardware platform’s characteristics.
1 A kernel dedicated to display the ”hello world” string on console.

Bringing Ease and Adaptability to MPSoC Software Design 129

primitive helloworld {
provides activity.api.Main as main
requires video.api.Console as console
implementation helloworld.c

}

type video.lib.console {
provides video.api.Console as console

}

composite helloworldKernel {
contains application = helloworld
contains console : video.lib.console
binds application.console to console.console

 }

composite st230.helloworldKernel
 extends helloworldKernel{

contains booter = st230.head
overloads console = st230.video.lib.GraphicConsole
binds booter.main to application.main

}

a

b

c

d

Fig. 3. ADL code example that describes a basic Hello World kernel for ST230 platform

Composite components allow also binding constructs for specifying the con-
nections between their subcomponents and/or their server and client interfaces.
Finally, components can extend other components for overloading or adding
some subcomponents and/or giving some more precisions about their internal
structures such as creating new bindings or also assigning some attributes.

Think Programming Guide for C. Once interfaces and application architec-
ture have been defined, implementations of primitive components remain to be
written. For that purpose, programmers should use a programming guide which
is mapped on C language. Theses guidelines are defined through macros that
will be used by standard C compilers. This feature is crucial for the portability
and the reusability of the implementation code. Programmers are also free to
not use these guidelines if this does not answer their specific needs. In this case,
they are supposed to respect some naming and binary interface conventions for
enabling the interactions with other components. The binary interface of Think
components are detailed in [6].

The mentioned programming guide provides five macros for enabling com-
ponent programming in C.

– DECLARE_DATA{<variable>*}, to declare components instances’ private instance data.
– METHOD(<interface>, <method>), to declare provided interfaces methods.
– REQUIRED.<interface>, to access to a required interface
– DATA.<variable>, to access to components instances’ data.
– ATTRIBUTE.<variable>, to access to an attribute of the component.
– CALL(<interface>, <method> [, <argn>]*), to invoke operations on a required interface

We give hereafter a source code example for the helloworld client component
in order to illustrate the implementation of a simple component. Each instance
owns a private attribute called counter which is incremented, when calling the
main method, before calling the putString method on the console required
interface.

DECLARE_DATA
{int counter ;}
void METHOD(mItf, main)(void *_this, int argc, char **argv) {

DATA.counter ++ ;
CALL(REQUIRED.console, putString, "Helloworld") ;

}

130 A.E. Özcan, S. Jean, and J.-B. Stefani

The value of these macros are obviously specific to each component. The
specialization of these macros is done by our compilation chain. In fact, an en-
capsulation file is generated for each component with regards of the information
given in ADL and IDL description of components. This generated file first de-
fines each of these macros and a set of data structures that are necessary for the
implementation of a given component and then includes the implementation file
that is written by the programmer. By this way, these macros are resolved into
specific values for each component during the classical C pre-compilation phase.

5.2 Compilation Chain

The Think framework is completed with a compilation chain supporting the
above programming environment. This chain takes as input a set of IDL, ADL
and C implementation files and gives as output a set of ANSI C files that are
compiled and linked with the target platforms’ specific C compilers. By this way,
Think programs are easily portable to different platforms. Figure 4 details the
different compilation steps:

1. IDL files are compiled into C implementation and header files. In its simplest
way, an interface is translated into a binary interface that conforms to the
one specified in [6]. If more complex communication adapters are needed
(such as RPC stubs and skeletons), they are also generated at this step.

2. ADL files are compiled into C files. For primitive components, encapsulation
files are generated as described previously. For composite components, the
entire implementation code is generated according to the ADL description
(the concrete implementation is given in subcomponents).

3. Once all input files are translated into C (or eventually assembly) files, they
are compiled into object files using the target platforms C compiler. After
this step, a set of binary object files are produced.

.adl.idl

.c .S

ADL
Compiler

IDL
Compiler

.c.c.h

Target
Platform's
C Compiler

.o

Target
Platform's

Linker

Kernel
Image

Boot
Loader

Generic

Platform specific

Fig. 4. Think compilation chain. The top part contains target independent code and
tools while the bottom part includes the target specific ones.

Bringing Ease and Adaptability to MPSoC Software Design 131

4. Finally, the set of object files are linked into a kernel image that can be
deployed on the hardware device.

5.3 Kortex

Kortex is a library, gathering a set of Think components dedicated to embedded
operating system and application design, that aims at enhancing the component
reuse. In this subsection, we describe its content. One must remind that these
components are given for convenience and do not necessarily make part of a
kernel if they are not needed. However, except for the HAL ones, all included
components are entirely reusable and help rapid kernel development.

Hardware Abstraction Layer (HAL). HAL components are hardware-
specific, and thus vary from a platform to another. This set of components
usually includes booters, trap handlers, low-level memory drivers (MMU, TLB,
cache, etc.) and some device drivers such as frame-buffers, storage and human-
machine interface drivers. Think supports many HAL libraries from general pur-
pose platforms such as PowerPC to specific embedded platforms such as ARM
and ST2XX processors.

Operating System Services. Kortex also includes many components imple-
menting operating system services. These ones include dynamic memory man-
agers, thread and scheduler implementations, network stack components, file
system components and so on. Using this library, system architects can assem-
ble any kind of kernels from exokernels to general purpose kernels.

Multi-processor Support Services. To ease the development of multi-
processor systems and applications, we enhanced Kortex with several communi-
cation and synchronization components. Among these ones, we can cite synchro-
nous and asynchronous message passing components, distributed semaphores,
. . . One of the major extensions we have made consists in a loop distribution
component that eases the distribution of complex computations on multiple
nodes with Single Instruction Multiple Data (SIMD) parallelization.

Performance Monitoring Services. Finally, we extended Kortex with many
performance monitors such as time and cycle counters that can be used for
evaluating timing properties of software written in Think.

5.4 Construction of Distributed Operating Systems for MPSoCs

Fractal offers a unique abstraction for any kind of software which is component.
Following this philosophy, an operating system is captured as a component in
Think framework. We adapted this idea to distributed operating systems by
providing a specific composite component controller that provides control over
multiple operating system instances that are hosted on different nodes of an
MPSoC. This controller which is quite different than the classical ones acts only
during the compilation step, and is in charge of creating and deploying the

132 A.E. Özcan, S. Jean, and J.-B. Stefani

required stubs and skeletons for inter-processor communication according to the
system topology. It also acts on the linker tool to create the kernel images with
regards to the memory mappings of the systems for each processor.

One must remark that our approach is not the one adopted by the platform-
based design community. In particular, we do not intend to generate the HAL
components regarding a platform specification, but assemble automatically a set
of existing communication components (hand-written or generated using inter-
face compilers) regarding the architectural specification given in ADL. By this
way, the complexity of the communication protocol which depends on the under-
lying interconnect is embedded into assembled communication components, and
hence the purpose and the capacity of the compilation chain remains orthogonal
beside the complexity of the underlying platform topology and specificities.

6 Evaluation

With regards to the challenges that we underlined in Section 2, we present below
some evaluations of Think framework within the MPSoCs software development
context.

6.1 Porting Facility

In opposition to the general purpose computer market which is dominated by few
platform architectures and processors, MPSoCs integrate a variety of processors
with very different characteristics and instruction sets as well as several different
hardware accelerators and I/O sensors. In this context, porting a software to dif-
ferent execution platforms is unavoidable. We believe that the component based
approach addresses this issue in two points. First, since this approach produces
more modular software, it is easier to find which modules will be affected by the
porting process. Second, as components encapsulate code through well-defined
interfaces, what remains to do is often just to replace the HAL components by
others in most cases.

As explained in the previous section, Think’s Kortex library makes an ex-
plicit distinction between generic system components and platform-dependent
ones. In addition, Think’s compilation chain intends to be completely portable
since it only generates ANSI C code and integrates any C compiler for back-end
binary generation. Thanks to these two features, systems written using Think
components can be quickly adapted to any kind of hardware platform.

Think has been ported to many platforms from Macintosh Power-PC to em-
bedded devices such as ST2XX and ARM processors. We estimate that only a
little part of the system software (about 25% of a minimalist operating system)
has to be rewritten. This part essentially consists on boot components, trap han-
dlers, low-level memory managers and required device drivers. Once these HAL
components are written, the rest can be reused from Kortex library to build-up
complete systems. For example, when we ported Think on ST230 platform, we
adapted the compilation tool chain in about 30 minutes, we had the first boot
of a ”blank” kernel in about one hour and we rewrote all the Kortex’s target
depending components in few days.

Bringing Ease and Adaptability to MPSoC Software Design 133

6.2 Multi-processor System/Application Co-design

One of the relevant experimentations that we have done to evaluate the effec-
tiveness of our framework for MPSoC system and application software co-design
consists at rewriting in Think a realistic multimedia decoder application and to
deploy it in different execution scenarios from single-thread to multiple proces-
sors. We give below a survey of this experimentation which was detailed in [17]
in order to illustrate how the component-based approach helps the design and
the implementation of such software in the context of MPSoCs.

H.264 Decoder Written in Fine-Grained Components. The base of the
decoder code used for our experiments comes from the JM 9.6 H.264 reference
software [18] which provides a complete decoder written by several academic
and industrial contributors. This decoder is originally written in C language and
contains no assumptions nor optimizations for a given hardware platform. It is
relatively huge in terms of lines of source code (26KLOC).

The good news is that using Think does not imply rewriting such a code,
it comes in particular with a relatively well-defined and robust methodology for
creating components from monolithic C code. This methodology is detailed in
[17], we only recall here that this procedure is incremental, and that the pro-
gram can be compiled and run to fix introduced defects after each introduction
of new component. From the code writer’s point of view, the translation task
consists at revisiting the function declarations and the implementations that will
be embedded into interfaces to be exposed to other components, by introducing
the macros which were described in subsection 5.1. From the software architect’s
point of view, the task is a bit more complex: the global variables have to be
embedded into components and have to be exposed to others through the in-
terfaces, reusable interfaces should be defined and component cut-outs must be
defined to obtain really modular software.

At the end of the componentization process, we obtained 35 functional com-
ponents which identify different input (RTP, file, etc.) and output methods (dis-
play, file, network streaming, etc.) that use the same interface and some internal
decoder modules that correspond to different entropy coding methods (CAVLC,

Single-thread Single-processor Configuration

Decoder CoreInput Output

File
Reader

Parser

CABAC

CAVLC

Picture
Buffers

Stream
Reader

Decoder
Input

File
System

Memory
Allocator

Frame
Buffer

RSFMO
Par
Set

Output
Adaptor

Displayer

Deblock
Filter

Q
DCT

-1
-1

OS

Fig. 5. Component-based architecture of JM H.264 decoder hosted by an operating
system that implements exclusively the required services

134 A.E. Özcan, S. Jean, and J.-B. Stefani

CABAC). As illustrated at the top part of Figure 5, we basically grouped to-
gether these functional components into three composites which depict a logical
division of the treatment pipeline: the input, the decoder core and the output.

Single-Threaded Single-Processor Architecture. Having created a com-
ponent library that contains above mentioned decoder modules, we built different
decoder instances adapted to different execution contexts. The first and the most
intuitive one adopts a single-thread architecture and is functionally equivalent to
the original JM-96 decoder. We compared this configuration to the original code
in order to evaluate the cost of having a modular implementation. We measured
an execution time overhead of 1.5%. This is encouraging because this reasonable
gap is mainly due to the use of virtual function tables that enable dynamic bind-
ings of component interfaces. On the other hand, the memory overhead is about
7%. Beside the data structures used to maintain the meta data of components,
this overhead is also due to the informations related to component identifica-
tion and other reflexivity support. This overhead remains open to optimizations
since many informations that are denoted with strings can be replaced by more
compact data structures such as hash codes.

The advantages of modular software with explicit required interfaces is felt
when it is question to customize the application or the system software. We ex-
perimented this issue by customizing the operating system which is in charge
of hosting the above decoder application. Since all system service dependencies
are explicitly expressed in ADL, the operating system customization consists at
assembling the needed system components using the ADL. With about 225 lines
of ADL code, we describe a system that contains a dynamic memory allocator,
a file system and necessary device drivers to display graphics on screen. The
resulting decoder-specific kernel has a footprint of 35kB which is closely compa-
rable to standalone runtime systems provided for bare embedded systems and
far less than the size of micro kernels and general purpose operating systems. We
believe that execution time results are not an issue since they reveal much more
the algorithms used in the system if we consider as constant the above presented
overhead which is intrinsic to our component binary interfaces invocations.

Multi-threaded Multi-processor Architecture. In another incarnation of
the decoder that we called MTMP, we distributed the three main composites
described above on three processors. The specificity of this incarnation is that
we achieved the distribution without changing the application components (i.e.
the content of mentioned composites) but only by modifying the binding seman-
tics of these three modules for having inter-processor communication channels.
These communication channels implement the data exchange between the nodes
of the pipeline through circular buffers and hence avoids unnecessary data copies.
Creating such binding components that we had to add into Kortex library took
very few time since the code written is approximatively a C code that imple-
ments a circular buffer FIFO and its ADL description. This binding is platform
independent since its heap and synchronization mechanisms are externalized
using client interfaces. The implementation of these interfaces makes naturally

Bringing Ease and Adaptability to MPSoC Software Design 135

Multi-thread Multi-processor Configuration

CPU 1 CPU 2 CPU 3

OS OS

Pull
Stub

File
System

Memory
Allocator

Memory
Allocator

Frame
Buffer

OS

OutputDecoder

Pull
Stub

Push
Stub

Input

Push
Stub

Shared
Memory

Connector

Shared
Memory

Connector

Fig. 6. Three stages pipelined MTMP decoder architecture

part of HAL components. We also customized the operating systems running
on each node according to the system dependencies of the stage that it hosts.
As illustrated in Figure 6, the OS1 supports a dynamic memory allocator, a file
system and optionally a TCP-UDP/IP network stack for the input module, the
OS2 only provides a memory allocator for the decoder core and the OS3 simply
provides a frame-buffer driver to display the output. The description of such a
multi-processor system enlarged the lines of code written in ADL since the com-
ponents that appears in Figure 6 but not in Figure 5 are added. The creation of
this multi-processor kernel image running on the multi-processor shared memory
platform that integrates ST2xx processors is handled by our extension described
in 5.4.

7 Conclusion and Future Work

Multi-Processor System-on-Chips have become a cornerstone of multimedia and
communications for mobile embedded devices. Vis-a-vis the rapid standard and
application evolutions, MPSoC software designers must now find new ways to
turn their platforms as customizable as possible, for enabling them to be config-
ured with regards to end-users’ needs.

In this paper, we have described how component-based software engineering
principles could help to reach that goal. We have presented and illustrated by
example how Think framework could ease MPSoCs software designers task by
providing them a unified methodology and tools to quickly define and customize
their software for such platforms. We have also argued around the evaluations of
our approach and demonstrated the benefits once again in terms of reusability
but also in terms of porting.

Nevertheless, some improvements can be made and are subject to future
work. First of all, execution time and memory usage overhead are two key para-
meters that must be tuned. As presented in the evaluation, if runtime overhead is
not significant, memory overhead still remains important and has to be reduced.
We are currently working on the binary interfaces of components for improv-
ing method invocation latency. The memory overhead is mainly due to strings
denoted in components’ binary structures for reflexivity support. These rele-

136 A.E. Özcan, S. Jean, and J.-B. Stefani

vant informations could be denoted using more compact data structures (like
hash tables) and this could lead to a footprint reduction. We also scheduled
a revision of the compilation chain for supporting ADL extensions to denote
some hardware-specific informations, for instance in order to take into account
platforms where coexist not only heterogeneous processing units (homogeneous
processors and accelerators) but also heterogeneous processors. As several im-
plementations of Fractal component model exist (C++, Java and C), another
project is to unify these implementations under a unified architecture in order to
enhance programmability. Finally, we are working on dynamic reconfiguration in
order to support structural and architectural modifications of software on-the-fly
with efficient mechanisms for quiescent state capture and state transfer issues.

References

[1] Moore, G.: Cramming More Components into Integrated Circuits. Electronics,
Vol. 38, Num. 8, April 1965.

[2] Szyperski, C.: Component Software. Addison-Wesley Prfessional; 2nd Edition,
November 2002. ISBN 0201745720.

[3] Bruneton E., Coupaye T. and Stefani J.B.: Recursive and Dynamic Software
Composition with Sharing. In Proceedings of 7th International Workshop on
Component-Oriented Programming (WCOP02), ECOOP 2002, Spain, June 2002.

[4] Object Management Group: CORBA Component Model (CCM),
http://www.omg.org/technology/documents/formal/components.htm

[5] Sun Microsystems: EJB Specification, http://java.sun.com/products/ejb/
[6] J-P. Fassino et al.: THINK: A Software Framework for Component-based Oper-

ating System Kernels, USENIX Annual Technical Conference, 2002.
[7] Bruneton E., Coupaye T., Leclercq M., Quéma V. and Stefani J.B.: An Open

Component Model and its Support in Java. In Proceedings of the International
Symposium on Component-based Software Engineering, Scotland, may 2004.

[8] Medvidovic, N. and Taylor, R. N.: A Classification and Comparison Framework
for Software Architecture Description Languages. IEEE Transactions on Software
Engineering, Vol. 26, Num. 1, 2000.

[9] Friedrich L.F., Stankovic J., Humphrey M., Marley M. and Haskins J.: A Survey of
Configurable, Component-Based Operating Systems for Embedded Applications.
IEEE Micro, Vol. 21, Num. 3, May 2001.

[10] Campbell R. et al.: Designing and Implementing Choices: An Object-Oriented
System in C++. Communications of the ACM, Vol. 36, Num. 9, September 1993.

[11] Ford B. et al.: The Flux OSKit: A Substrate for Kernel and Language Research. In
Proceedings of 16th ACM Symposium on Operating Systems Principles (SOSP),
ACM Press, New York, 1997.

[12] Beuche D. et al.: The PURE Family of Object-Oriented Operating Systems for
Deeply Embedded Systems. In Proceedings 2nd IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, Piscataway, 1999.

[13] Gabber E. et al.: The Pebble Component-Based Operating System. In Proceedings
of USENIX Annual Technical Conference, USENIX Association, 1999.

[14] Bruneton E., Coupaye T. and Stefani J.B.: The Fractal Specification, version
2.0.3, February 2004. http://fractal.objectweb.org/specification/index.html.

[15] Fractal web site, http://fractal.objectweb.org.

Bringing Ease and Adaptability to MPSoC Software Design 137

[16] THINK web site, http://think.objectweb.org.
[17] Layäıda O., Özcan A.E. and Stefani J.B.: A Component-based Approach for MP-

SoC SW Design: Experience with OS Customization for H.264 Decoding. In Pro-
ceedings of 3rd ESTIMEDIA Workshop under CODES+ISSS, September 2005,
New York, USA.

[18] JVT Software Page, JM/TML Software Coordination.
http://bs.hhi.de/suehring/tml/.

Modular Proof Principles for Parameterised
Concretizations

David Pichardie

IRISA/ENS Cachan (Bretagne),
IRISA, Campus de Beaulieu,

F-35042 Rennes, France
david.pichardie@irisa.fr

Abstract. Abstract interpretation is a particularly well-suited method-
ology to build modular correctness proof of static analysers. Proof mod-
ularity becomes essential when correctness proof is machine checked for
realistic languages To deal with complex concrete and abstract domains,
the notion of parameterised concretization has been proposed to allow a
structural decomposition of the abstract domain and its concretization.
In this paper we develop proof principles for such concretizations, based
on the theoretical notion of concretization functor, with the aim of ob-
taining modular correctness proofs. Our technique has been tested on
a machine-checked correctness proof of a static analysis for a Java-like
bytecode language.

1 Introduction

Machine-assisted deductive methods improve the reliability of analysers, by
providing machine-checked correctness proofs from which implementations of
analysers are automatically extracted. The feasibility of the approach was demon-
strated in a previous paper [3], but the human cost of such a work remains a
major drawback to develop a large number of such certified static analysers. In
[3], a first basis of a generic framework for proving and extracting static analysers
in the Coq [5] proof assistant was proposed but this reusable part was mainly
dedicated to the specification of the analysis and the extraction of the analyser.
The correctness proof of the abstract semantic with respect to the standard se-
mantics was done in an ad hoc fashion due to a lack of methodology. This paper
aims at improving this point by proposing proof techniques that allow to mod-
ularise such proofs. The technical concept underlying these techniques is that of
parameterised concretization functions.

Abstract interpretation proposes a rich mathematical framework for conduct-
ing such correctness proofs of static analysers. It is particularly well-suited to
propose modular and generic construction usable for several analyses and pro-
gramming languages. It is then a very promising tool when dealing with machine
checked proof. In this context proof are done in-extenso with a high level of de-
tail. The global architecture of the proof becomes then a critical point, specially
when dealing with static analysis of ”real” languages.

G. Barthe et al. (Eds.): CASSIS 2005, LNCS 3956, pp. 138–154, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modular Proof Principles for Parameterised Concretizations 139

A simple example of modular technique is the abstraction product. To ab-
stract a concrete domain of the form P(C × D) a simple modular approach is
to split the proof into two distinct parts : an abstract domain C� to abstract
P(C) (using a monotone concretization function γC ∈ C� → P(C)) and an
abstract domain D� to abstract P(D) (using γD ∈ D� → P(D)). Each ab-
straction can then be developed and proved correct forgetting the other. Global
abstraction is then done on the product domain C� ×D� with a concretization
γ ∈ C� ×D� → P(C ×D) defined by

∀(c�, d�) ∈ C� ×D�, γ
(
c�, d�

)
=

{
(c, d)

∣∣∣∣ c ∈ γC(c�)
d ∈ γD(d�)

}
This technique is particularly tempting for a real language like Java bytecode
whose memory space looks like:

Heap× Static Heap×Operand Stack× Local Variable

In this setting, this technique allows to split the proof effort into four indepen-
dent parts. Unfortunately this modular technique restricts enormously the power
of the abstraction usable because it necessarily forgets any relation on C × D.
On the other side, full relational abstractions compute properties on C ×D but
are difficult to modularize. In this paper we study a restricted class of relational
abstraction, called parameterised, where a concretization function can be para-
meterised by a concrete element. For example, for the analysis of heap structure,
the concretization for reference sometimes only makes sense in the context of a
concrete heap. At the global abstraction level, the concretization is then of the
form

∀(c�, d�) ∈ C� ×D�, γ
(
c�, d�

)
=

{
(c, d)

∣∣∣∣ c ∈ γC(c�)
d ∈ γD

c (d�)

}
As we will see in Section 4, this dependence of γD with respect to C is one
obstacle for proof modularity. The main contribution of this paper is to propose
a modular proof technique compatible with parameterised concretization. This
proof technique is based on a natural notion of concretization functor. The tech-
nique requires some restriction on the used abstraction but we have nevertheless
been able to experiment it on a realistic representation of bytecode language with
two non-trivial abstractions dynamical allocated values: abstraction by class and
abstraction by creation site. The whole proof of a generic static analysis has been
machine-checked using this technique. The Coq source of development are avail-
able on-line at http://www.irisa.fr/lande/pichardie/CarmelCoq/Cassis05
/main.html.

Plan of the paper. Our machine-checked proof concerns a language similar to
the Java byte code, named Carmel, presented in Section 2. In Section 3, we
present classic modular constructions which appear to be difficult to use with
concretization functions (presented in Section 4). We then propose a notion of
concretization functor in Section 5 and shows it modularity capabilities. The
machine-checked proof is briefly described in Section 6. Section 7 presents the
relative work and Section 8 concludes.

140 D. Pichardie

Notations and prerequisites. We write :: for the list concatenation symbol, A+

represents the set of non empty sequences of elements in a set A, →m denotes
the monotone functions constructor and ⇀ the partial function constructor. The
pointed notation on order symbol (�̇) represents the associated point-wise exten-
sion of the order (f1�̇f2

def⇐⇒ ∀x, f1(x) � f2(x)). We assume basic knowledge
of abstract interpretation [8] concepts such as concretization function and partial
trace semantics.

2 Target Case Study

The notion of parameterised concretization functions is not linked to a partic-
ular programming language or abstraction, but we have chosen to present our
results in the concrete setting of a representative subset of the Carmel language
[10, 3]. The language is a bytecode for a stack-oriented machine, much like the
Java Card bytecode. We concentrate here on the intraprocedural fragment with
instructions about stack operations, numeric operations, conditionals, object cre-
ation and modification. We leave out method calls which are not needed to ex-
plain our results and which would only complicate the presentation. Thus, the
role of objects are reduced to dynamically allocated records. Nevertheless, the
semantic domain includes a heap and an environment and is sufficiently complex
to test our proof modularization technique. In this setting, a program is com-
posed of a list of class declaration and a list of bytecode attached to program
points.

Val = N + Reference + {null}
LocalVar = Var ⇀ Val Stack = Val∗

Object = ClassName × (FieldName ⇀ Val) Heap = Reference ⇀ Object
State = ProgPoint × Heap × LocalVar × Stack

Fig. 1. Carmel semantic domains

The language is given a small-step operational semantics manipulating states
of the form 〈〈pc, h, l, s〉〉, where pc is a program point, h a heap of objects, l a
set of local variables, and s a local operand stack (see [15] or [4] for details).
Formal definitions of the semantic domains are given in Figure 1 and the differ-
ent semantic rules are presented in Figure 2. We write s1 →i s2 if s2 is the new
state resulting from the execution of instruction i in state s1. The values we ma-
nipulate are either integers or memory references. We let n ranges over integers
and loc over references. The instruction numop is parameterised by an operator
name op (addition, multiplication, ...) whose semantics is given by [[op]]. The
value stored in the local variable x is represented by l[x] (see instruction load).
l[x �→ v] assigns the variable x to the value v and leaves the others values in l
unchanged (similar notations are used for heaps and objects). Two rules define

Modular Proof Principles for Parameterised Concretizations 141

〈〈pc, h, l, s〉〉 →nop 〈〈pc + 1, h, l, s〉〉 〈〈pc, h, l, v :: s〉〉 →pop 〈〈pc + 1, h, l, s〉〉
〈〈pc, h, l, s〉〉 →push n 〈〈pc + 1, h, l, n :: s〉〉 〈〈pc, h, l, s〉〉 →goto pc′ 〈〈pc′, h, l, s〉〉

〈〈pc, h, l, n1 :: n2 :: s〉〉 →numop op 〈〈pc + 1, h, l, [[op]](n1 , n2) :: s〉〉
〈〈pc, h, l, s〉〉 →load x 〈〈pc + 1, h, l, l[x] :: s〉〉

〈〈pc, h, l, v :: s〉〉 →store x 〈〈pc + 1, h, l[x �→ v], s〉〉
〈〈pc, h, l, n :: s〉〉 →if pc′ 〈〈pc + 1, h, l, s〉〉

when n = 0
〈〈pc, h, l, n :: s〉〉 →if pc′ 〈〈pc′, h, l, s〉〉

when n
= 0
〈〈pc, h, l, s〉〉 →new cl 〈〈pc + 1, h[loc �→ def(cl)], l, loc :: s〉〉

when ∃c ∈ classes(P) with ClassName(c) = cl and
loc = newObject(cl, h)

〈〈pc, h, l, v :: loc :: s〉〉 →putfield f 〈〈pc + 1, h[loc �→ o′], l, s〉〉
when h(loc) = o, f ∈ definedFields(class(o)) and o′ = o[f �→ v]
〈〈pc, h, l, loc :: s〉〉 →getfield f 〈〈pc + 1, h, l, o.f :: s〉〉

when h(loc) = o and f ∈ definedFields(class(o))

Fig. 2. Operational semantic rules of Carmel

the if instruction behavior according to the first value of the current operand
stack. The last three instructions deal with object manipulation. The function
newObject computes, for a class name cl and a heap h, a new memory reference
loc where a new object def(cl) of class cl will be stored. The notation o.f repre-
sents the access to a field f in the class instance o (f should be a declared field
of the class of o, see condition f ∈ definedFields(class(o))).

The partial trace semantics [[P]] of a Carmel program P is defined as the set
of reachable partial traces:

[[P]] =
{

s0s1 · · · sn ∈ State+
∣∣∣∣ s0 ∈ Sinit ∧
∀k < n, ∃i, sk →i sk+1

}
∈ P(State+)

where Sinit is the set of initial states.
The goal of the analysis is to compute an approximation of [[P]] for any

given program P . The approximation lives in an abstract domain D� with a
poset structure

(D�,�)
. The correctness1 of the approximation is specified by

a monotone concretization function γ belonging to
(D�,�) →m (P(D),⊆). All

these elements form what we called a connection (in reference to Galois con-
nections whose abstraction function is nevertheless not explicitly used in this
paper). We note such a connection (P(D),⊆)

γ←− (D�,�)
.

For simplicity, the example taken in Section 3, 4 and 5 will not be directly
related to Carmel. They will nevertheless be inspired by the analysis effectively
proved in Coq and presented in Section 6.

1 The result [[P]]� of the analysis is then said correct if its concretisation is a conse-
quence of the property [[P]]: [[P]] ⊆ γ [[P]]� .

142 D. Pichardie

3 Modular Construction of Connection

The theory of abstract interpretation explains how to compose connections in
order to build new connections from old. A classical example of such a con-
struction is the abstraction of variable environments (partial maps from variable
names to value designed here by the set Env) which can be constructed for any
abstraction of values.

Definition 1 (Generic environment connection). A generic environment

connection is a functional which maps a connection (P(Val),⊆) γVal

←−− (Val�,�Val�)
to a 5-tuple (Env�,�Env� , γEnv, get�, subst�) with

– (Env�,�Env�) is a partially ordered set,
– γEnv ∈ (Env�,�Env�) →m (P(Env),⊆) is a monotone concretization func-

tion between Env� and the set of environments,
– get� ∈ Env� × Var → Val� is a correct approximation of the function giving

the value attached with each variable

∀ρ� ∈ Env�, ∀x ∈ Var,
{
ρ(x)

∣∣ ρ ∈ γEnv(ρ�)
} ⊆ γVal(get�(ρ�, x))

– subst� ∈ Env�×Var×Val� → Env� is a correct approximation of the function
which substitutes a value with an other one in a variable

∀ρ� ∈ Env�, ∀x ∈ Var, ∀v� ∈ Val�,{
ρ[x �→ v]

∣∣∣∣ ρ ∈ γEnv(ρ�)
v ∈ γVal(v�)

}
⊆ γEnv(subst�(ρ�, x, v�))

Hence a generic environment connection constructs an abstract domain, a con-
cretization function and two correct approximations of the primitive function for
manipulating environments, given a connection for abstracting values.

An example of such connection constructor is given by the classical non-
relational abstraction.

Lemma 1. The functional which associates with all connection (P(Val),⊆)
γVal

←−−(
Val�,�Val�

)
the 5-upplet

(
Env�,�Env� , γEnv, get�, subst�

)
with

– Env� = Var→ Val�

– �Env�= �̇Val
– ∀ρ� ∈ Env�, γEnv(ρ�) =

{
ρ

∣∣ ∀x ∈ Var, ρ(x) ∈ γVal(ρ�(x))
}

– ∀ρ� ∈ Env�, ∀x ∈ Var, get�(ρ�, x) = ρ�(x)
– ∀ρ� ∈ Env�, ∀x ∈ Var, ∀v� ∈ Val�, subst�(ρ�, x, v�) = ρ�[x �→ v�]

is a generic environment connection.

This lemma expresses that the non-relational abstraction of environments can be
constructed for any abstraction of values. Hence, several value abstractions can
be used without having to redo any proof about abstract environments. This is

Modular Proof Principles for Parameterised Concretizations 143

a crucial point for the proof effort required by a proof assistant. Generic connec-
tions have an additional advantage when working with a proof assistant: during
construction, the value abstraction is opaque and hence the proof is simpler, only
focusing on environment manipulations. It is thus particularly convenient to use
such generic constructors in machine-checked proofs. Unfortunately they are dif-
ficult to use for more sophisticated value abtractions. In particular, analyses of
the heap structure (or the memory) of dynamically allocated data structures
(references, cells, objects, ...) can require other form of connections.

Example 1. If all values in the language are references on dynamically allocated
object in a heap, an abstraction of these references by the set of class names of
the associated objects only makes sense in the context of a concrete heap.

∀s ∈ P(Class),
γ(s) =

{
(h, loc)

∣∣ loc ∈ dom(h) ∧ class(h(loc)) ∈ s
} ⊆ Heap×Val

with Heap and Object defined as for Carmel semantic domains.
This kind of concretization is generally written in a nicer, parameterised form

∀h ∈ Heap, ∀s ∈ P(Class),
γh(s) =

{
loc

∣∣ loc ∈ dom(h) ∧ class(h(loc)) ∈ s
} ⊆ Val

We will now formally define this kind of concretization and show how we can
use them during correctness proofs.

4 Parameterised Concretization

The concretization function we study here depends on a context. Each abstract
value is concretized into a relation between a concrete value and a context element,
where the context element is necessary to give a non-trivial concretization of the
abstract element. We are hence interested in connections of the following form

(P(C ×D),⊆)
γ←− (D�,�)

with C the context domain. Some examples:

Example 2. The same kind of concretization as in example 1 can be used to
abstract references by the super-class of all objects they refer (this is the ab-
straction taken in the Java bytecode verifier).

∀τ ∈ Class,
γ(τ) =

{
(h, loc)

∣∣ loc ∈ dom(h) ∧ class(h(loc)) ≺P τ
} ⊆ Heap×Val

where ≺P is the subtyping relation associated with the class hierarchy of pro-
gram P .

Example 3. A more precise abstraction than abstraction by set of class names can
be obtained by abstracting with set of creation points [14]. The formal definition
of the concretization function is then relative to a partial execution trace.

144 D. Pichardie

As in Carmel semantics, partial trace are a non-empty sequences <pc0, m0 >::
· · · ::<pcn, mn > of states, each state containing a program point pci (taken in
a set ProgPoint) and a memory mi. If the instruction found at a program point
pc is an object creation with class cl (event noted instr(pc) = new cl), a new
address newObject(cl , m) is allocated in the memory m to stock an object of
class cl inside.

The associated concretization is

∀s ∈ P(ProgPoint),

γ(s) =

⎧⎪⎪⎨
⎪⎪⎩(<pc0, m0 >:: · · · ::<pcn, mn >, loc)

∣∣∣∣∣∣∣∣
∃k ∈ {0, . . . , n},
pck ∈ s
instr(pck) = new cl
newObject(cl , mk) = loc

⎫⎪⎪⎬
⎪⎪⎭

End of examples.

This kind of concretization can be represented under an equivalent parame-
terised form. We will note γparam the function of C → D� → P(D) defined
by

∀c ∈ C, ∀d� ∈ D�, γparam
c (d�) = {d | (c, d) ∈ γ(d�)}

Most of the time, we will omit the ·param notation because the context will allow
us to do it without ambiguity.

4.1 Using Generic Connections with Parameterised Concretization

When fixing an element c ∈ C in the context, we can treat γc as a concretization
in

(
D�,�) →m (P(D),⊆), forgetting the relational view. We are then back to

the application framework of the modular construction exposed in the previous

section: a parameterised concretization (P(Val),⊆)
γVal

c←−−−
(
Val�,�Val�

)
(with c a

fixed element in C) can be used to instantiate any generic environment connec-
tion. We obtain a collection of 5-tuple

(
Env�,�Env� , γEnv

c , get�, subst�
)

c∈C
with

get� for example verifying

∀c ∈ C, ∀ρ� ∈ Env�, ∀x ∈ Var,
{
ρ(x)

∣∣ ρ ∈ γEnv
c (ρ�)

} ⊆ γVal
c (get�(ρ�, x))

A generic environment connection is then able to use a parameterised value
concretization to produce a parameterised environment concretization with its
correct basic operators. Nevertheless, note that the correctness property assured
by these operators are relative to the same context c. As we will see now this will
be a major limitation when proving correctness of abstract transfer functions.

4.2 Proving Correctness of Abstract Transfer Functions

The difficulties with parameterised concretizations become apparent when we
consider proving the correctness of transfer functions (the abstract interpretation
of each byte code). For example, in a language with variables and dynamic

Modular Proof Principles for Parameterised Concretizations 145

allocations the memory state is of the form Mem def= Heap× Env with Heap def=
Val ⇀ Object, Env def= Var ⇀ Val and Val the domain value, reduced here at
addresses in the heap.

Because the memory is split into two different structures, it is natural to
abstract it with two distinct abstract elements. Given a heap connection

(P(Heap),⊆)
γHeap

←−−− (Heap�,�Heap)

and let suppose, for the variable environments, the value abstraction has required
a heap parametrization (as in example 1): the abstraction is hence of the form(

(P(Env),⊆)
γEnv

h←−−− (Env�,�Env)
)

h∈Heap

The concretization of a couple (h�, ρ�) of abstract elements will be

γ
(
h�, ρ�

)
=

{
(h, ρ)

∣∣∣∣ h ∈ γHeap(h�)
ρ ∈ γEnv

h (ρ�)

}
⊆ Heap× Env

Each transfer function will be of the form

F : Heap× Env→ Heap× Env
(h, ρ) �→ (f(h, ρ), g(h, ρ))

To correctly abstract a transfer function, we have to propose a function F � of
the form

F � : Heap� × Env� → Heap� × Env�

(h�, ρ�) �→ (
f �(h�, ρ�), g�(h�, ρ�)

)
and verifying the following “classical” correctness criterion

∀(h�, ρ�) ∈ Heap� × Env�,{
(f(h, ρ), g(h, ρ))

∣∣∣∣ h ∈ γHeap(h�)
ρ ∈ γEnv

h (ρ�)

}
⊆

{
(h′, ρ′)

∣∣∣∣ h′ ∈ γHeap(f �(h�, ρ�))
ρ′ ∈ γEnv

h′ (g�(h�, ρ�))

}

This criterion can be equivalently reduced to the conjunction of two criteria

∀(h�, ρ�) ∈ Heap� × Env�,
∀(h, ρ) ∈ γHeap(h�)× γEnv

h (ρ�), f(h, ρ) ∈ γHeap(f �(h�, ρ�))
(1)

∀(h�, ρ�) ∈ Heap� × Env�,
∀(h, ρ) ∈ γHeap(h�)× γEnv

h (ρ�), g(h, ρ) ∈ γEnv
f(h,ρ)(g

�(h�, ρ�)) (2)

Contrary to the criterion (1), the criterion (2) is problematic because it contains
two distinct instances γEnv

h and γEnv
f(h,ρ). As we have seen previously, properties

produced by combining generic connections and parameterised concretizations
only contain a single context element. So we can not prove (2) by only combining
this kind of properties.

146 D. Pichardie

We can however, reduce the proof of (2) into two sufficient (but not necessary)
conditions, one dealing with f , the other with g:

∀(h�, ρ�) ∈ Heap� × Env�,
∀(h, ρ) ∈ γHeap(h�)× γEnv

h (ρ�), g(h, ρ) ∈ γEnv
h (g�(h�, ρ�))

(3)

∀(h, ρ) ∈ Heap× Env, γEnv
h ⊆̇ γEnv

f(h,ρ) (4)

The criterion (3) now only contains a single instance γEnv
h of the environment

concretization (contrary to (2)) and is well-suited to be proved by combining
properties given by some generic connection constructors.

The criterion (4) remains nevertheless problematic because like in (2), several
instance of γEnv appear. The next section will be dedicated to this criteria. We
will propose a slight change in the generic environment connection definition
which will allow us to prove (4) in a modular way without making appear a
notion of context in the definition.

5 Concretization Functors

The improvement we will make in generic connection definition will be based on
concretization functionals : operators which transform concretizations into other
concretizations.

5.1 Example and Definition

An example of such operator has already been seen in lemma 1.

Γ :
((

Val�,�Val�

)
→m (P(Val),⊆)

)
→

((
Env�,�Env�

)
→m (P(Env),⊆)

)
γVal �→ ρ� �→ {

ρ
∣∣ ∀x ∈ Var, ρ(x) ∈ γ(ρ�(x))

}
This kind of operator is under-lying in many generic construction found in the
abstract interpretation literature. A natural condition we could impose on such
operator is monotonie, hence obtaining concretization functors.

Definition 2 (Concretization functor). Given four partially ordered sets
(A,�A),

(
A�,�A�

)
, (B,�B) and

(
B�,�B�

)
, a concretization functor is an op-

erator Γ taken in
((

A�,�A�

)→m (A,�A)
) → ((

B�,�B�

)→m (B,�B)
)

which
verifies the monotonicity property:

∀γ1, γ2 ∈
((

A�,�A�

)→m (A,�A)
)
, γ1 �̇A γ2 ⇒ Γ (γ1) �̇B Γ (γ2)

A concretization functor is hence preserving relative precision between con-
cretizations. This monotony property appears to be very natural and satisfied
by many concretization operators found in the literature (see the generic con-
struction of weak relational environment in [11] for a good example). As far a
we know this property has never been explicitly used or noticed.

This notion will now be integrated in a new definition of generic environment
connection.

Modular Proof Principles for Parameterised Concretizations 147

Definition 3 (Revisited generic environment connection). A generic en-
vironment connection is a functional which associates to any partially ordered
set

(
Val�,�Val�

)
a 5-tuple

(
Env�,�Env� , ΓEnv, get�, subst�

)
where

–
(
Env�,�Env�

)
is a partially ordered set,

– Γ ∈
(
(Val�,�Val�)→m (P(Val),⊆)

)
→(

(Env�,�Env�)→m (P(Var→ Val),⊆)
)

is a concretization functor,
– get� ∈ Env� × Var → Val� is a correct approximation of the function giving

the value attached with each variable

∀γ ∈
(
Val�,�Val�

)
→m (P(Val),⊆) ,

∀ρ� ∈ Env�, ∀x ∈ Var,
{
ρ(x)

∣∣ ρ ∈ ΓEnv (γ) (ρ�)
} ⊆ γ(get�(ρ�, x))

– subst� ∈ Env�×Var×Val� → Env� is a correct approximation of the function
which substitute a value with an other one in a variable

∀γ ∈
(
Val�,�Val�

)
→m (P(Val),⊆) ,

∀ρ� ∈ ρ�, ∀x ∈ Var, ∀v� ∈ Val�,{
ρ[x �→ v]

∣∣∣∣ ρ ∈ ΓEnv (γ) (ρ�)
v ∈ γ(v�)

}
⊆ ΓEnv (γ) (subst�(ρ�, x, v�))

The modification used here is made at the level of the concretization function
which is no more fixed but now parameterised by any value concretization. Con-
cerning primitive abstract operators get� and subst�, the quantification made on
all value concretization does not require more proofs than in the previous defi-
nition because γVal was already anonymous (ie. its definition was not necessary
to build the proof). We can hence affirm that this new definition is not more
restrictive or specialized than the previous: only the monotonicity property of
Γ has been added and it is a very natural property which do not restrict the
generic construction we can use.

We will now explain why these generic connections enable us to prove (4) in
a modular fashion.

5.2 Using the Functorial Property in Proof

With our new definition of generic environment connection, the concretization
γEnv used in the example of Section 4 is now of the form

γEnv = ΓEnv (
γVal)

Hence the criterion (4) can now be reduced to a property on γVal.

Lemma 2. If γEnv = ΓEnv
(
γVal

)
with ΓEnv a concretization functor, then the

criterion

148 D. Pichardie

∀(h, ρ) ∈ Heap× Env, γVal
h ⊆̇ γVal

f(h,ρ) (5)

implies
∀(h, ρ) ∈ Heap× Env, γEnv

h ⊆̇ γEnv
f(h,ρ)

Proof. It is a direct consequence of the monotony property of ΓEnv.

The remaining proof condition (5) is thus structurally smaller: it now deals
with value abstraction. It can be seen has a conservative requirement. The con-
cretization associated with the transformation of the heap h should contain all
the properties of the original one. It is a strong property but the generic connec-
tion definition allow us to move it at the level of the value connection without
sacrificing the genericity of the environment connection.

It remains us to explain how such proof can be managed at the level of the
value abstraction.

5.3 Establishing the Conservative Requirement

In the context of a full correctness proof there will be as many proof condition
like (5) as functions f encountered in the different transfer functions of the
language. We propose to factorize these proofs by cutting such conditions into
two new conditions. This cut is done by introducing a well-chosen pre-order on
the context domain.

We will need to introduce a notion of monotone parameterised concretization.

Definition 4 (monotone parameterised concretization). Given a pre-
order relation "C ⊆ C × C on a set C, a parameterised concretization γ ∈
C → D� → P(D) is monotonously parameterised with respect to "C if

∀(c1, c2) ∈ C2, c1 "C c2 ⇒ γc1 ⊆̇ γc2

Lemma 3. Let S ⊆ (Heap× Env) → Heap be a set of function. Let γVal be a
parameterised value concretization and "Heap a pre-order on Heap. If

γVal is monotone with respect to "Heap (6)

and

∀f ∈ S, ∀(h, ρ) ∈ Heap× Env, h "Heap f(h, ρ) (7)

then
∀f ∈ S, ∀(h, ρ) ∈ Heap× Env, γVal

h ⊆̇ γVal
f(h,ρ)

As we explained before, this proof method is not applicable for all parameterised
value concretization. The main restriction is on the existence of a well-suited pre-
order on context domain.

Modular Proof Principles for Parameterised Concretizations 149

This existence is nevertheless ensured in all the non trivial examples we gave
previously in Section 3 and 4:

– For example 1, we can take

"Heap=
{

(h1, h2)
∣∣∣∣ dom(h1) ⊆ dom(h2)
∀loc ∈ dom(h1), class(h1(loc)) = class(h2(loc))

}

The value concretization chosen in this example is then monotone with re-
spect to this pre-order because if h1 and h2 are heap verifying h1 "Heap
h2, if loc belongs to γh1(s) then loc ∈ dom(h1) and class(h1(loc)) ∈ s.
But dom(h1) ⊆ dom(h2), so loc ∈ dom(h2) and because class(h1(loc)) =
class(h2(loc)), we can affirm that class(h2(loc)) ∈ s. We then have demon-
strated that loc ∈ γh2(s).

The property 7 will be verified by any transfer function which does not
remove objects in the heap, neither modify their class. It is effectively the
case for all transfer function of programming language like Java or bytecode
Java without dealing with garbage collector2.

– The same pre-order as before can be used to deal with example 2.
– For example 3, the context is no more a heap but a partial trace. The relation
"Trace is thus sufficient :

"Trace= {(tr1, tr2) | tr1 is a prefix of tr2 }
Indeed, if tr1 is a partial trace prefix of a partial trace tr2, all allocations
made in tr1 appear in tr2. Thus the monotonicity of γVal with respect to
"Trace is proved.

For the criterion 7, we only have to verify that all transfer function only
put new states on previous partial trace, which is indeed the case.

5.4 Summarizing the Proof Method

We now summarize our proof method for establishing the correctness of the
function F � with respect to F (example taken in Subsection 4.2)

– The correctness criterion is split into two equivalent criteria (1) and (2).
(1) leads to modular proofs because it relies on the same parameterised
concretization, but (2) is not.

– The criterion (2) is then split into two sufficient criteria (3) and (4). (3) is
provable using generic connection constructions.

– To establish (4) we introduce a notion of concretization functor and a well
chosen pre-order. (4) is hence split into criteria (6) and (7). (6) only deal
with the abstraction made on values. (7) is a proof about the semantic of
the language.

2 Dealing with garbage collection could be done by restricting value to accessible values
from the variable in the environment. It would certainly complicate the proof and
we have not yet explored this eventuality.

150 D. Pichardie

6 Modular Machine Checked Proof of a Bytecode
Analyser

This proof technique has been experimented for proving the correctness of a
generic Carmel static analyser. This analysis computes a state invariant for each
program point. The abstract state is thus of the form

State� = ProgPoint→
(
Heap� × LocalVar� × Stack�

)

with Heap�, LocalVar� and Stack� generic abstract domains for heap, local vari-
ables and operand stack abstraction.

The generic static analyser is parameterised by five generic connections (for
values, operand stacks, local variables, objects and heaps) and two base abstrac-
tions (a parameterised one for locations and a classical simple one for integers).
Figure 3 shows the Coq interface definition for the operand stack. The interface
is parameterised by a lattice structure PV on a set V (the lattice of abstract
values). The interface contains 12 elements. First, the set t of abstract stacks,
the lattice structure Pos on t, and the concretization functor gamma which takes
concretization between P(Val) and PV and returns a concretization between
P(Stack) and Pos. The monotonicity property of gamma is required by the field
gamma monotone. At last, nil ab, pop ab, top ab and push ab are four basic ab-
stract operators of the stack domain with their corresponding correctness prop-
erties. (Post pop op) represents the post operator applied on the relation pop op.

Record OperandStackConnection (V:Set) (PV:Lattice V) :
Type := {
t : Set;
Pos : Lattice t;
gamma : Gamma (PowPoset Value) PV → Gamma (PowPoset OperandStack) Pos;
gamma monotone : ∀g1 g2,
orderGamma g1 g2 → orderGamma (gamma g1) (gamma g2);

nil ab : t;
nil ab correct : ∀g, (λs. s = nil) ⊆ (gamma g nil ab);

pop ab : t → t;
pop ab correct : ∀g s, ((Post pop op) (gamma g s)) ⊆ (gamma g (pop ab s));

top ab : t → V;
top ab correct : ∀g s, ((Post top op) (gamma g s)) ⊆ (g (top ab s));

push ab : V → t → t;
push ab correct : ∀g v s, ((Post2 push op) (g v) (gamma g s)) ⊆ (gamma g (push ab v s))

}.

Fig. 3. Operand Stack connection interface

Modular Proof Principles for Parameterised Concretizations 151

This interface and the others (for local variables, objects, ...) are collected in the
file AlgebraType available on-line for the interested reader.

The correctness of the analysis is established for any correct integer, refer-
ence, value, operand stack, local variables, object and heap connection. We have
implemented various instanciations of the different interfaces

– integers : abstraction by type (only one element in the abstract domain) and
constant abstraction (using Kildall’s lattice),

– references : abstraction by class (example 1) and abstraction by creation
point (example 2),

– values : abstraction by sum of the reference and the numeric abstraction with
two possibilities for the representation of the null constant (represented by
the bottom element or by a specific abstract object)

– stacks, local variables, objects : structural abstraction (structure is pre-
served) or one abstract value to abstract all the elements of the data

– heaps : only one instantiation parameterised by any object abstraction and
reference abstraction (with some restriction on the lattice used for references)

Compared with the previous proof done in [3], we have made two important
improvements. First, the proof is now modular and abstractions on semantic sub-
domains can be changed without redoing all the global proof : this is important
for incremental development and maintaining of the proof. Second, each sub-
domain abstraction is generic and independent from the others abstractions,
which helps considerably during the proof development by splitting the global
proof into several simpler proofs.

7 Related Works

In a previous paper [3], we have shown how to formalise a constraint-based
data flow analysis in the specification language of the Coq proof assistant. We
proposed a library of lattice functors for modular construction of complex ab-
stract domains. Constraints were expressed in an intermediate representation
that allowed for both efficient constraint resolution and correctness proof of the
analysis with respect to an operational semantics. The proof of existence of a cor-
rect, minimal solution to the constraints was constructive which means that the
extraction mechanism of Coq provided a provably correct data flow analyser in
Ocaml[12]. The library of lattices together with the intermediate representation
of constraints were defined in an analysis-independent fashion that provides a
basis for a generic framework for proving and extracting static analysers in Coq.
Nevertheless, no specific methodology was proposed to handle the correctness
proof of the abstract semantic with respect to the standard semantics.

The majority of mechanical verifications of program analyses have dealt with
the Java byte code verifier. Bertot [2] used the Coq system to extract a certi-
fied bytecode analyser specialized for object initialization. Barthe et al. [1] have
shown how to formalise the Java Card byte code verification in the proof assis-
tant Coq by isolating the byte code verification in an executable semantics of the

152 D. Pichardie

language. Klein and Nipkow [9] have proved the correctness of a Java byte code
verifier using the proof assistant Isabelle/HOL. All these works do not rely on
a general theory of static analysis like abstract interpretation, and are oriented
towards type verification.

The notion of parameterised concretization function has been implicit in
several works and was made explicit in the thesis of Isabelle Pollet [13]. In this
work, abstract interpretation of Java program are presented with the help of
parameterised concretization functions which are used to relate concrete and
abstract values with respect to a relation between locations. However, to the
best of our knowledge, no one has identified the functor property presented here
which is essential for the modularization and mechanization of the proofs.

Concerning proof modularity, only a few works propose a modular approach
similar to us. The main reason is that research papers rarely deal with a deep
hierarchy of semantic domains. In our context, splitting the proof development
following the semantic hierarchy was useful, especially to machine-checked the
proof. Much works are dedicated to propose one single powerful construction
of abstract domain parameterised by some base domain, see for example works
of Miné [11] or Cortesi and al [6]. But base abstractions are not parameterised
(because the target analyses do not need this notion) and thus they did not
encounter the same technical problem as us. In [13] several generic connection
constructors are given to analyse heap structure and a common interface is pro-
posed. Nevertheless this interface makes an explicit use of the parameter : what
we try to avoid with our notion of concretization functor. But the proposed con-
structor allow more powerful analyses than those we implement in Coq. A last
interesting related work can be found in the course note of Patrick Cousot [7]
where the abstract interpreter construction is modularized following each seman-
tic sub-domain. But once again, no parameterised abstraction is used then our
functor notion is not required.

8 Conclusion

Mechanised correctness proofs of static analyses for realistic programming lan-
guages requires proof principles for simplifying the proof development. Like in
other software engineering activities, modular correctness proofs are desirable
because they are easier to develop and to maintain. We observe that one obsta-
cle to modularity is the complexity of concrete states chich are built from many
apparently inter-related components. The abstract domain has to reflect these
relations but using a full-fledged abstract domain with standard (relational)
concretizations leads to proofs with poor modular structure. In this paper we
have shown how parameterised concretization functions forms a basis for proof
principles that allow to capture the necessary relational information while using
concretization functions as if we were working with non-relational domains.

To arrive at these proof principles, we have extended the theory of parame-
terised concretizations with the key notion of concretization functors that make
explicit the compositional way in which concretization functions for complex

Modular Proof Principles for Parameterised Concretizations 153

domains are constructed from concretization of their simpler constituents. We
have formulated and proved an important property of concretization functors
that shows how a properly chosen pre-order on the concrete domains can greatly
simplify the correctness proof for a large class of transfer functions.

The motivation for these theoretical developments came from a mechanised
correctness proof for a generic static analysis for stack-based byte code language
with memory allocation (similar to Java Card). As argued in Section 6 the proof
principles have demonstrated their practical value by reducing the proof effort
considerably. We tested this genericity by instantiating the abstract domain for
memory references with two well-known abstractions while keeping the rest of
the abstract state fixed. This was a non-trivial task because these reference
abstraction use distinct parameterisations.

We now dispose of a proof technique which allows to certify complex static
analysis for real languages in a reasonable time. A further work could be to
achieve such an analysis for a byte code languages with all the features of the
Java Card languages (exception, array, virtual calls). Propose certified analyser
implementation without loosing efficiency require still works when dealing with
complex abstraction.

References

1. Gilles Barthe, Guillaume Dufay, Line Jakubiec, Bernard Serpette, and Simão Melo
de Sousa. A Formal Executable Semantics of the JavaCard Platform. In
Proc. ESOP’01, number 2028 in Lecture Notes in Computer Science. Springer-
Verlag, 2001.

2. Yves Bertot. Formalizing a JVML Verifier for Initialization in a Theorem Prover.
In Proc. CAV’01, number 2102 in Lecture Notes in Computer Science. Springer-
Verlag, 2001.

3. David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting a
Data Flow Analyser in Constructive Logic. In Proc. ESOP’04, number 2986 in
Lecture Notes in Computer Science, pages 385–400. Springer-Verlag, 2004.

4. David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting
a Data Flow Analyser in Constructive Logic. Theoretical Computer Science,
342(1):56–78, September 2005. Extended version of [3].

5. The Coq Proof Assistant. http://coq.inria.fr/.
6. Agostino Cortesi, Baudouin Le Charlier, and Pascal Van Hentenryck. Combina-

tions of abstract domains for logic programming. In POPL, pages 227–239, 1994.
7. P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy

and R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

8. Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–547, 1992.

9. Gerwin Klein and Tobias Nipkow. Verified Bytecode Verifiers. Theoretical Com-
puter Science, 298(3):583–626, 2002.

10. Renaud Marlet. Syntax of the JCVM language to be studied in the SecSafe project.
Technical Report SECSAFE-TL-005, Trusted Logic SA, May 2001.

11. A. Miné. A few graph-based relational numerical abstract domains. In SAS’02,
volume 2477 of LNCS, pages 117–132. Springer-Verlag, 2002.

154 D. Pichardie

12. The Objective Caml language. http://caml.inria.fr/.
13. Isabelle Pollet. Towards a generic framework for the abstract interpretation of

Java. PhD thesis, Université catholique de Louvain, Belgium, 2004.
14. Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for Java

using cnnoted constraints. In OOPSLA, pages 43–55, 2001.
15. Igor Siveroni. Operational semantics of the Java Card Virtual Machine. J. Logic

and Automated Reasoning, 2004. To appear.

Formalisation and Verification of the
GlobalPlatform Card Specification

Using the B Method

Santiago Zanella Béguelin

INRIA Sophia Antipolis,
2004 Route des Lucioles, 06902 Sophia Antipolis, France

Santiago.Zanella@inria.fr

Abstract. We give an overview of an application of the B method to
the formalisation and verification of the GlobalPlatform Card Specifi-
cation. Although there exists a semi-formal specification and some ef-
fort has been put into providing formalisations of particular features of
smart card platforms, this is, as far as we know, the very first attempt
to provide a complete formalisation. We describe the process followed
to synthesise a mathematical model of the platform in the B language,
starting from requirements stated in natural language. The model con-
sistency has been thoroughly verified using formal techniques supported
by the B method. We also discuss how the smart card industry might
benefit from exploiting this formal specification and outline directions
for future work.

1 Introduction

1.1 Smart Cards

Smart cards [1] are small portable devices, usually the size of a credit card,
embedded with either only a memory chip or with both a microprocessor and
a memory chip. They are capable of communicating with an external network
terminal through a card reader and a contact or contact-less interface by ex-
changing Application Protocol Data Unit (APDU) messages. Smart cards are
broadly used in a significant number of applications, ranging from telecommu-
nications, transport and access control to electronic purses and e-government.
Most popular applications include debit cards, prepaid phone cards, and the Sub-
scriber Identity Module (SIM) cards used in mobile phones to hold subscriber’s
personal information and settings.

Early smart card applications were written for a specific combination of op-
erating system and hardware and designed to run as the sole application in a
card. This scheme forced card issuers to commit to a particular implementa-
tion without any possibility for post-issuance modification and at the same time
compelled users to carry a different card for each application they wished to use.
The need to overcome these difficulties lead to the concept of multi-application
smart cards, capable of hosting multiple applications and allowing applications

G. Barthe et al. (Eds.): CASSIS 2005, LNCS 3956, pp. 155–173, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

156 S. Zanella Béguelin

to be loaded, upgraded and unloaded after issuance. Multi-application smart
cards became a reality thanks to the increase in the computational power and
memory capacity of the cards and the development of general purpose card op-
erating systems in the last decade, including Java Card, MultOS, Windows for
Smart Cards and BasicCard. Each of these operating systems provides a com-
mon development framework and standard programming interfaces that improve
the portability of developed applications across different card implementations
and enable multiple applications to coexist on a single card sharing services and
data. This increased flexibility, unfortunately, does not come for free, since it
brings up new security concerns that need to be addressed.

In spite of all its benefits, the adoption of multi-application smart cards had
been slowed down due to the absence of standards for the security and appli-
cation management aspects of smart card platforms until the GlobalPlatform
consortium published their specifications, currently accepted as de facto indus-
try standards. However, because GlobalPlatform specifications are expressed in
natural language using a semi-formal notation, they are subject to misinterpre-
tations and their consistency cannot be formally verified. The following excerpt
from [2, Sect. 6.9.1.1] describing the state transitions of the Cardholder Verifi-
cation Method (CVM), might help in understanding the level of detail of the
natural language specification:

“At the end of a Card Session the CVM state shall transition back to Ac-
tive, except if the CVM state transitioned to the CVM state Blocked
during the Card Session”.

What should happen if the CVM state transitions to Blocked, but is later
unblocked and then transitions to another state like Validated (meaning suc-
cessful cardholder authentication) during the same card session? Common sense
dictates that the CVM state should nevertheless be reset to Active. A careless
reader may understand exactly the opposite.

1.2 GlobalPlatform

GlobalPlatform (GP) is a nonprofit organisation established in 1999 by lead-
ing companies from the industry, the government sector and vendor community
whose goal is to establish and drive the adoption of standards to enable an
open and interoperable infrastructure for smart cards, devices and systems that
simplifies and accelerates the development, deployment and management of ap-
plications across industries.

The main assets of GlobalPlatform are their specifications, available royalty-
free and downloadable from their website [3]. GlobalPlatform specifications cover
the card itself as well as their associated devices and systems and are applicable
to both single and multi-application scenarios. By providing these specifications
on a royalty-free basis GlobalPlatform succeeded in promoting their acceptance
as standards and in accelerating the adoption of smart card technology. An in-
creasing number of card vendors and application developers are adopting Glob-
alPlatform specifications as the standard upon which to base their smart card

Formalisation and Verification of the GlobalPlatform Card Specification 157

infrastructures. Present estimates indicate that the number of GlobalPlatform
compliant smart cards in circulation exceeds 670 million (600 million of which
are SIM cards).

1.3 Paper Overview

This work gives an overview of a formal specification of the GlobalPlatform
security and application management architecture using the B method. This
formal model provides an abstract reference specification expressed using a for-
mal mathematical language that has the potential for eliminating any ambiguity
that may remain in the existing semi-formal documentation expressed in nat-
ural language. The model also provides a general framework from which other
participants may build up and share their contributions.

The remainder of the paper is structured as follows: Section 2 gives a gen-
eral overview of the B method, Sect. 3 introduces the semi-formal specification
provided by GlobalPlatform while Sect. 4 describes its formalisation. Section 5
shows using an example how the formalisation should be interpreted, Sect. 6 de-
scribes the formal proof process and finally, Sect. 7 concludes presenting related
research on the subject and future work.

2 The B Method

2.1 Overview

The B method is a model-oriented formal method for engineering software sys-
tems developed by Abrial [4]. It is not only a notation for specifying systems, it
is a comprehensive formal method that covers the entire software development
cycle: from requirements specification to code generation. The method is based
on the mathematical principles of set theory and predicate calculus while its
semantics is given using a variant of Dijkstra’s weakest precondition calculus [5].

A B specification is composed of a hierarchy of components that are described
using the Abstract Machine Notation (AMN). AMN greatly resembles the no-
tation used in high-level imperative programming languages and provides the
representation and manipulation of mathematical objects such as natural num-
bers, sets and functions. The notation supports typical logical and set-theoretical
operators as well as some other useful operators that simplify the manipulation
of complex mathematical objects such as functions and relations (see Table 1 for
a description of the most common operators).

Each component in a specification represents nothing but a state machine: a
set of variables defines its state and a set of operations – state transitions – forms
an interface used to query and modify that state. Variable types and additional
constraints on the variables are introduced as invariants of a machine. State tran-
sitions in AMN are specified by means of generalised substitutions. A generalised
substitution is a construct built up from basic substitutions, such as x := e, corre-
sponding to simple assignments to state variables. The simultaneous substitution
(S1||S2), the bounded non-deterministic choice (CHOICE S1 OR S2 END),

158 S. Zanella Béguelin

Table 1. Commonly used B operators

Notation Semantics

P (X) Set of all subsets of X

X × Y Cartesian product of the sets X and Y

X ↔ Y Set of relations of X to Y , or equivalently P (X × Y)

X �→ Y Set of partial functions from X to Y

X → Y Set of total functions from X to Y

X �� Y Set of partial injective functions from X to Y

Id (X) Identity relation on X

R−1 Inverse relation of R

dom (R) Domain of the relation R

ran (R) Range of the relation R

R [X] Relational image of X under the relation R

X � R Binary relation R restricted to pairs with first component in X

X −� R Binary relation R restricted to pairs with first component not in X

R � X Binary relation R restricted to pairs with second component in X

R �−S Relation R overridden by S. Equivalent to (dom (S) −� R) ∪ S

R ⊗ S Direct product. Defined as {x, (y, z) | x, y ∈ R ∧ x, z ∈ S}

and the sequential composition (S1; S2) are examples of constructors used to
build up generalised substitutions from simpler ones. There exist three different
types of components:

Abstract Machines. Top-level components in specifications that describe
state machines in an abstract way, perhaps using non-deterministic state
transitions. They do not need to be directly implementable. Figure 1 shows
the typical structure of an Abstract Machine.

Refinements. Enriched versions of either an Abstract Machine or another Re-
finement. They must preserve the interface and behaviour but may otherwise
reformulate the data and operations of the original machine. The variables
in the original machine may be either preserved or refined in terms of new
variables. The relationship between the original and the refined variables is
stated as an invariant of the Refinement.

Implementations. Ultimate step in the refinement of an Abstract Machine,
both data and operations need to be implementable in a high-level pro-
gramming language. As a consequence, non-deterministic substitutions or
abstract variables (e.g. relations, functions) are not allowed in Implemen-
tations. An Implementation may rely on the operations and data imported
from Abstract Machines.

Operations are made up of a header and a body. The header of an operation
is an identifier, designating its name, optionally followed by a parenthesised

Formalisation and Verification of the GlobalPlatform Card Specification 159

MACHINE M
SEES
Constituents of Abstract Machines referred to here can be accessed in a read-only
fashion
SETS
Given sets. A given set is introduced by its name and an optional enumeration
of its values and may be used to type variables and constants
CONSTANTS
Constants that can be referred to in a read-only way
PROPERTIES
Properties of given sets and constants. Constants must be typed here
VARIABLES
State variables
INVARIANT
Variable typing and additional constraints on the machine variables
INITIALISATION
Assignment of initial values to the machine variables
OPERATIONS
Definition of machine operations
END

Fig. 1. General structure of an Abstract Machine. A short description follows each
clause.

comma-separated list of input formal parameters. A list of output parameters
may be specified preceding the name of the operation. The body of an operation
is a generalised substitution. An operation that has input parameters is written
using a precondition substitution (PRE P THEN S END) that types its
input parameters and may express other properties that shall hold at the time
the operation is executed.

A B model can be mechanically syntax and type checked. Thanks to the
mathematical semantics of the method, a B model may also be subject to formal
proof to verify its consistency (including the preservation of invariants) and the
correctness of all refinement steps.

2.2 Tool Support and Industrial Applications

There are currently two commercially available toolkits that support the com-
plete development of systems using the method, Atelier B from ClearSy, and
B-Toolkit from B-Core. During the development of this specification we opted
to use the Atelier B toolkit which allows to automatically type check and verify
the syntax of a specification as well as generate the proof obligations that once
discharged guarantee its consistency. To discharge these proof obligations Atelier
B provides a theorem prover which can be run either in automatic or interactive
mode. A survey of available tools based on the B method can be found in [6].

The B method is particularly suited to support the development of safety-
critical systems. It has been successfully applied in large industrial projects as
the Meteor automated subway in Paris [7] and the IBM Customer Information

160 S. Zanella Béguelin

Control System (CICS) [8]. It is also commonly accepted in the smart card
field as a suitable method for formalising and verifying applications [9, 10] or
particular aspects of smart card platforms [11, 12, 13]. For further details on the
method, the reader is encouraged to refer to textbooks such as [4] or [14].

3 GlobalPlatform Semi-formal Specification

The functional and security related requirements for GlobalPlatform cards are
specified in a semi-formal way in [2] and [15]. In some aspects both specifica-
tions overlap, and this is source of inconsistencies. The functional requirements
of GlobalPlatform compliant cards, including all card content management func-
tions (e.g. application installation and deletion) and their runtime behaviour, are
described in [2] by means of natural language and conceptual diagrams, while
[15] describes in detail, using a semi-formal notation, the security requirements
of the platform, including requirements for the underlying Runtime Environ-
ment (RTE), Operating System and Integrated Circuit. These requirements are
expressed in terms of a number of Security Features (SF) which are themselves
specified in terms of one or more tables.

The header of a SF table (its first row) states the precondition that triggers
its activation. Each following row except the last one describes the rules by which
a user is permitted to perform some operation on some object in the card. For
example, the unique row in the body of Table 2 describes the conditions that an
incoming command in the APDU buffer must meet in order to be accepted for
processing. The last row of the table states its postcondition – the actions to be
taken in response to the operations.

SF tables are linked together by their preconditions and postconditions as
shown in Fig. 2. A glance at the figure should suffice to justify the need to specify

Table 2. A SF table adapted from [15] describing the validation of incoming APDU
commands

Precondition:

command

The Platform Code has control. AN APDU message is received.

OP_alive Table 5−34: The Supervisor Security Feature
(Invocation of security mechanisms)

Link(s) back:

Result (rule evaluates to false):

Result (rule evaluates to true):

Any APDU

Operation Object(s)

APDU Buffer
[Command]

Security Attribute(s)

Command[INS]
Command[Parameters]

(if the GP Registry[Selected App] is the ISD[AID] or any

((the Command[CLA] and Command[INS] shall be included
in the card configuration) and (the Command[Parameters]
shall not be illegal, missing, unexpected, out of range or have
out of range lengths))

Rule(s)

An appropriate GPCS error APDU response message is returned to the off−card entity.

to dispatch the command.
This Table links to Table 5−37: The Supervisor Security Feature (Command dispatch)
The command is accepted for processing.

GP Registry[Selected App]

other SD[AID]) or (if the Command is Select[Any App]) then
Command[CLA]

Short Form:

Formalisation and Verification of the GlobalPlatform Card Specification 161

DAP Verification
Table 5−29

Install − Extradite
Tables 5−5, 5−6

Delete
Table 5−8

Receipt Generation
Table 5−10

Lifecycle Management
Table 5−11

Personalize
Table 5−7

Secure Channel
(Security policy)

Table 5−22

Table 5−24

Secure Channel
(Integrity/Auth)

Table 5−25

Secure Channel
(Confidentiality)

Sensors & Alarms
Table 5−46

Table 5−20

Security Domain
Access (B)

Load
Table 5−4

ISD Access (C)
Table 5−3

Token Verification
Table 5−9

Firewall
Table 5−38

Memory Content
Table 5−47 Table 5−48

Internal Communication Random Number
Generation
Table 5−49

Decryption
Encryption/

Table 5−50

Subject/Object

Table 5−41
Identification

Card Audit (CM)
Table 5−42

Tamper Resistance
Table 5−51

Card Audit (CA)
Table 5−43

Table 5−30
Verification
Mandated DAP

Table 5−13
(Key Generation)
Key Management

Table 5−18

Key Management
(Key Destruction B)

Table 5−34

Supervisor
(Invocation of SFs)

Secure Channel
(Termination)

Table 5−27

Supervisor (Reset)
Table 5−35

(Command syntax)
Supervisor

Table 5−36

(Command dispatch)
Table 5−37

SupervisorObject Reuse
Table 5−39

Event Actions
Table 5−40

OP API Access
Table 5−32

Table 5−26

Secure Channel
(Key/secret data)

CVM Handling
Table 5−31

Table 5−14

Key Management
(Key Loading CM)Other functions

Table 5−12

Failure Management
Table 5−45

ISD Access (A)
Table 5−1

Table 5−16
(Key Access)

Key Management

ISD Access (B)
Table 5−2

Key Management

Table 5−17
(Key Destruction A)

Table 5−19

Security Domain
Access (A)

Self Test
Table 5−44

Secure Channel

Table 5−23
(Initiation)

RTE API Access
Table 5−33

Table 5−21

Security Domain
Access (C)

Non−Secure Channel
Table 5−28

Table 5−15

Key Management
(Key Loading)

Fig. 2. Pre- and postcondition links between SF tables as appearing in [15]. The post-
condition of each table at the tail of an arrow establishes the precondition of the table
at the head of the arrow. Tables without incoming arrows are called Function Tables
and are activated on demand.

in a precise manner the interrelationships between tables. The number of tables
and the greatly tangled dependencies among them makes a natural language
specification error-prone.

162 S. Zanella Béguelin

A particular SF, the Supervisor SF acts as the starting point for all card
operations. The execution of a card operation may be interpreted as follows:

1. The Supervisor SF table is invoked, its postcondition links to another table
depending on the operation type;

2. In the new table, the rule field in the row corresponding to the operation
is evaluated. According to the result, the table postcondition may link to
another table or may terminate the execution of the operation;

3. The previous step is repeated until the execution terminates. Any changes
in the card state are committed upon completion of the execution.

4 Formalisation of the GlobalPlatform Specification

A standard specification for such critical functions as the security and card man-
agement architecture of a card platform must be carefully designed, validated
and verified in order to obtain a maximal level of confidence in its implemen-
tations. Stating and structuring the specification in natural language, by means
of tables or diagrams is a good starting point. However, natural language spec-
ifications are error-prone, subject to misinterpretations and cannot be formally
verified. The obvious step to achieve a higher level of reliability is to derive a
formal specification and apply formal techniques to verify its consistency and
desirable properties. The application of formal methods is also a must for de-
velopers seeking the highest Common Criteria evaluations assurance levels (i.e.
those from EAL5 to EAL7).

In the rest of this section we describe the formalisation of the GlobalPlat-
form specification. A royalty-free complete and commented version of the formal
model may be obtained from the GlobalPlatform website [3].

4.1 Specification Architecture

Figure 3 shows a view of the specification architecture where arrows represent
composition links and boxes represent components. The specification is organised
in four layers of increasing detail according to their model of the card state.
Each layer except the lowest one is represented by an Abstract Machine and its
Implementation and each Implementation relies in turn on the Abstract Machine
in the next lower layer in the hierarchy. This hierarchical model facilitates the
construction of the specification and its formal verification. A short description
of each Abstract Machine is as follows:

Shared–Data. Definitions of sets and constants shared among different com-
ponents of the specification. Some of these sets and constants are used as
types (e.g. AID, the set of valid application identifiers), some are used as
configuration parameters for the card (e.g. ISD, the Issuer Security Domain
AID) and others as abstract functions (e.g. select–aid, that extracts the AID
of the application to be selected from a Select APDU command).

Interface. Outlines the execution of APDU commands and the behaviour upon
Card Reset with respect to the set of currently open logical channels.

Formalisation and Verification of the GlobalPlatform Card Specification 163

Fig. 3. Overall specification architecture. An arrow pointing from component M to
component N should be read as M SEES|IMPORTS N. Ovals represent Abstract
Machines, boxes Implementations.

Validation. Models the validation, dispatching and processing of APDU com-
mands as well as the behaviour upon Card Reset or Power up. Each operation
deals with a different type of interaction, a Card Reset, a Power Up event
or a specific type of APDU command. The card state is extended to include
the currently selected application and all applications in the GP Registry.

Process. Security Features that deal with the validation, dispatching and se-
curity processing of APDU commands as well as GP API methods are first
introduced in this machine. The card state is extended to represent most of
the card features including registered load files, the CVM and cryptographic
keys. The actual processing of APDU commands is specified in detail.

Security–Features. Security Features as defined in [15] are represented as op-
erations in this component. Operations in the Process machine make use of
this component to ensure conformance to the selected security policies.

The Security Features are described in [15, Chapter 5] in terms of attempted
operations performed on objects. The outcome, i.e. whether the attempt succeeds
or fails, is decided by a set of rules which are expressed in terms of security at-
tributes. Objects and security attributes identified in [15] are represented by the
variables and constants of the machine specifications. The execution of an APDU
command is sketched in the Interface machine. The state of the card in this ma-
chine is only represented by the set of currently open Logical Channels and so
there is no need to distinguish among the different types of APDU commands
at this stage. In the Validation machine the card state is extended to include
information about the registered applications and security domains, their life
cycle and the currently selected application. The Interface–1 Implementation

164 S. Zanella Béguelin

describes how the operations in the Interface machine are implemented using
the operations in the Validation Abstract Machine.

The level of detail in each stage depends on how abstract is the representation
of the card state: how many and which variables are used to represent it. As the
card state is extended in the lower layers, the specification becomes richer and
more detailed. Ultimately, all operations are implemented on operations in the
Security–Features Abstract Machine, meaning – once the specification is proved
correct – that the functional requirements of the platform are implementable in
terms of the Security Features and satisfy the security policies enforced on the
platform.

5 An Example: Installing a New Application

Smart cards employ APDU messages for carrying out the communication with
card terminals. An APDU contains either a command message (Table 3) sent
from the terminal to the card, or a response message sent from the card to the
terminal. The communication is half-duplex and follows a master-slave model.
The smart card waits for APDU commands from the terminal in its interface.
Once a command is received, the card executes it and sends back a response
APDU message.

Navigation through the execution of an APDU command can be accom-
plished by following in the specification the implementation path from the In-
terface machine to the Security–Features machine. If the process is stopped some-
where in between, the result would be an abstract specification of the command
behaviour. We illustrate how to obtain a specification of the execution of an
Install[For Install and Make Selectable] command issued by the Card
Administrator in a simplified scenario. The command requests the installation
of an application from an executable module and sets its life cycle state to Se-
lectable, enabling the application to be selected and receive commands from
off-card entities. The executable module from where the application is instanti-
ated must be present within and executable load file in the card. The structure
of a correctly formatted Install[For Install and Make Selectable] com-
mand is shown in Table 4.

Table 3. APDU command message structure

Field Description Length

CLA Class Byte 1 byte

INS Instruction Byte 1 byte

P1 Reference Control Parameter P1 1 byte

P2 Reference Control Parameter P2 1 byte

Lc Data Length 1 byte

Data Command Data Variable

Le Length of Expected Data 1 byte

Formalisation and Verification of the GlobalPlatform Card Specification 165

Table 4. Install[For Install and Make Selectable] command content

Field Content

CLA CLA–PROPRIETARY/CLA–SPROPRIETARY

INS INS–INSTALL

P1 P1–INSTALL–SELECTABLE

P2 NULL

Lc Data Length

Data Executable Load File AID, Executable Module AID, Application AID, and
Application Privileges

Le NULL

sw ← APDU(CLA,INS,P1,P2,Data,Le) =
PRE
CLA ∈ BYTE ∧ INS ∈ BYTE ∧ P1 ∈ BYTE ∧
P2 ∈ BYTE ∧ Data ∈ DATA ∧ Le ∈ BYTE

THEN
IF channel(CLA) �∈ open–channels THEN
sw := SW–ERROR

ELSE
sw :∈ STATUS–WORD ||
open–channels :(open–channels ⊆ LOGICAL–CHANNEL ∧ 0 ∈ open–channels)

END
END

Fig. 4. APDU operation in the Interface machine. The notation v : (P) should be
read as ‘v becomes such that P holds’. v :∈ S assigns to v any value in the set S.

The reception of an APDU command is represented by the execution of
the APDU operation in Interface (Fig. 4), the input parameters being the
command fields. Supposing the channel information contained in the CLA byte
of the command corresponds to a currently open logical channel, the specification
mandates some status word to be returned and allows the set of open logical
channels to be modified. Considering that the card state in this machine is
restricted to the set of open logical channels, this is a complete specification of
the APDU outcome with respect to this representation.

The implementation of the APDU operation in Interface–1 (Fig. 5) discrimi-
nates between different commands, and delegates the processing of the command
to the Install–For–Install operation in the Validation machine (Fig. 6).

Assuming that the command syntax is correct, the card life cycle is not Termi-
nated (app–life–cycle(ISD) �= TERMINATED), the command data is valid and
the off-card entity is authenticated (AUTHENTICATED ∈ sl), the Install–For–
Install operation restricts the modification of the card state, but does not de-
termine exactly how the state is modified. Up to this point, we have obtained an
abstract description of the functional and security requirements for the command.

166 S. Zanella Béguelin

sw ← APDU (CLA,INS,P1,P2,Data,Le) =
VAR ch,bb IN
ch := channel(CLA);
bb ← IsOpen(ch);
IF bb = FALSE THEN
sw := SW–ERROR

ELSE
sd ← IsSDSelected(ch);
IF sd = TRUE THEN
CASE CLA OF
EITHER CLA–PROPRIETARY,CLA–SPROPRIETARY THEN
CASE INS OF
EITHER INS–INSTALL THEN
CASE P1 OF
EITHER P1–INSTALL–SELECTABLE THEN

sw ← Install–For–Install(ch,CLA,INS,P1,P2,Data,Le)
. . .

Fig. 5. Implementation of the APDU operation in Interface–1

sw ← Install–For–Install(ch,CLA,INS,P1,P2,Data,Le) =
PRE
ch ∈ open–channels ∧
CLA ∈ {CLA–PROPRIETARY, CLA–SPROPRIETARY} ∧
INS = INS–INSTALL ∧ P1 = P1–INSTALL–SELECTABLE ∧ P2 ∈ BYTE ∧
Data ∈ DATA ∧ Le ∈ BYTE ∧ selected(ch) ∈ security–domains

THEN
IF
P2 = NULL ∧ Le = NULL ∧ app–life–cycle(ISD) �= TERMINATED ∧
data ∈ VALID–INSTALL–FOR–INSTALL–DATA ∧ AUTHENTICATED ∈ sl

THEN
sw :∈ STATUS–WORD ||
applications, security–domains, app–life–cycle, default–selected :(
applications ⊆ AID ∧ applications$0 ⊆ applications ∧
security–domains ⊆ applications ∧ security–domains$0 ⊆ security–domains ∧
app–life–cycle : applications → LIFE–CYCLE ∧
app–life–cycle$0 ⊆ app–life–cycle ∧
default–selected ∈ applications)

ELSE
sw := SW–ERROR

END
END

Fig. 6. Install–For–Install operation in Validation. Observe how modifications to
the card state are restricted using the becomes such that substitution. The value of a
variable prior to the substitution is referenced by appending $0 to its name.

The implementation of the Install–For–Install operation makes use of the
Install–For–Install–1 operation in Process (Fig. 7) to describe the actual
processing of the command. If the card is not locked, the executable module

Formalisation and Verification of the GlobalPlatform Card Specification 167

sw ← Install–For–Install–1(ch,CLA,INS, P1,P2,Data,Le) =
PRE
ch ∈ open–channels ∧
AUTHENTICATED ∈ security–level(ch) ∧
app–life–cycle(ISD) �= TERMINATED ∧
. . .

THEN
IF
app–life–cycle(ISD) �= CARD–LOCKED ∧
mod–aid(Data) ∈ executable–modules ∧
app–aid(Data) /∈ applications ∧ app–aid(Data) /∈ executable–load–files ∧
(pr–default–selected ∈ privileges(Data) ⇒
default–selected = ISD ∧ app–life–cycle(ISD) �= OP–READY)

THEN
sw := SW–OK ||
applications := applications ∪ {app–aid(Data)} ||
app–sd(app–aid(Data)) := elf–sd(mod–elf(mod–aid(Data))) ||
app–elf(app–aid(Data)) := mod–elf(mod–aid(Data)) ||
app–privileges := app–privileges ∪ {(app–aid(Data), privileges(Data))} ||
app–life–cycle(app–aid(Data)) := SELECTABLE ||
IF pr–default–selected ∈ privileges(Data) THEN
default–selected := app–aid(Data)

END
END

Fig. 7. Install–For–Install–1 operation in Process

from where the application is to be instantiated exists, and the AID and priv-
ileges assigned to the application would not leave the card in an inconsistent
state, an entry is created in the registry for the application, its associated se-
curity domain, life cycle state and privileges. This last Install–For–Install–1
operation is implemented using only the operations in Security–Features, which
correspond to the Security Features described in [2].

The example above may not give much insight into the dimension of the
specification. Every APDU command and GP API function is specified like the
the Install[For Install and Make Selectable] command just described.
The complete specification being around eight thousand lines long is not a trivial
case study.

6 Formal Proof

The B method semantics allows to mechanically generate the Proof Obligations
(PO) to be discharged in order to guarantee that the model is mathematically
consistent. The PO may come from the need to prove different kinds of properties:

Initialisation consistency. Assuming the stated properties of constant and
sets, the initial state of an abstract machine must be established by the
generalised substitution under its INITIALISATION clause;

168 S. Zanella Béguelin

Invariant preservation. As state transitions in the B language are specified
via operations, and transitions shall not violate the invariant, each operation
in an abstract machine must preserve the invariant;

Refinement correctness. The INITIALISATION substitution and each
operation in a refinement shall fulfil the specification of their abstract ver-
sions.

With the help of the Atelier B automatic prover almost 90% of the generated
PO were proved automatically, the remaining obligations were proved interac-
tively. This gives a complete guarantee of the model consistency assuming the
correctness of the tool and the underlying theory. As we have nothing but a
natural-language specification to compare it with, the specification correctness
cannot be verified. However, simple invariants can be proved to gain more confi-
dence. Some interesting invariants may be specified in the Process machine. For
example, that the ISD should be the default selected application when the card
is in the OP–Ready state

card–life–cycle = OP–READY⇒ default–selected = ISD ,

or that selected applications shall not be in the Installed state

selected � app–life–cycle–state−1 [{INSTALLED}] = {} .

In fact, trying to prove the following invariant

elf–sd ∈ executable–load–files→ security–domains

that ensures that every load file is associated with a security domain, uncov-
ered an omission in the original specification of the Delete command runtime
behaviour that allows a security domain to be deleted even if it has executable
load files associated.

Table 5 gives a summary of the formal proof of the specification. Due to the
way the specification is constructed most of the PO arise in proving that an im-
plementation is correct with respect to its abstract counterpart than in proving

Table 5. Proof summary

Component Proved Interactively Proved Automatically Total

Interface 0 2 2
Interface–1 11 211 222
Validation 3 161 164
Validation–1 144 316 460
Process 54 841 895
Process–1 118 987 1,105
Security–Features 55 781 836

Total 385 3,299 3,684

Formalisation and Verification of the GlobalPlatform Card Specification 169

that an Abstract Machine operation does not violate an invariant. The former
involves proving that every possible behaviour allowed by the implementation
is allowed by the original operation and that the result in terms of the imple-
mentation variables is the same, as well as proving that the preconditions of the
operations on which the implementation relies are satisfied. The later amounts
to proving that the operation does not violate the machine invariant. In con-
trast, in this specification proof obligations of invariant preservation tend to be
more complicated than proof obligations of implementation correctness. As a re-
sult, the layered architecture of the specification helps to reduce the number of
non-trivial proof obligations but increases the total number of proof obligations.

Much of the proof obligations generated in a component tend to be very
similar. In many cases, the same proof script may be used to discharge several
proof obligations. In this way, the number of actual interactive proofs is greatly
reduced. There were no hard proofs, and no need to develop theories for the
proof assistant with the exception of a few set theory lemmas.

7 Conclusion

While multi-application platforms have long been seen as the future of smart
cards, the lack of commonly trusted standards for application management and
their security concerns has slowed their deployment. We strongly believe that
this work will help improve the confidence in GlobalPlatform specifications and
accelerate their acceptance as trusted standards. The objective of providing a
formal model of the GlobalPlatform specifications was successfully achieved in
7 men months, a neglectable cost considering the payback. As the work was
in progress, omissions and inconsistencies were detected in the original specifi-
cations, including one that could lead to the execution of unauthorised APDU
commands when the card is in the Terminated life cycle. Some of these issues
were resolved in fluent contact with GlobalPlatform, while others still remain
to be settled by the GlobalPlatform Card Specification Workgroup. The result-
ing exchange of opinions is an invaluable documentation that gives the rationale
behind the decisions taken to resolve those issues. We expect most of these docu-
mentation to be included in the next release or amendment of the GlobalPlatform
specifications.

7.1 Future Work

Test Automation. Reduced time-to-market is critical in the smart card in-
dustry and testing is a bottleneck for the deployment of new card platforms.
The availability of the formal model opens the way to specification-driven test
automation. This means that test cases can be generated, executed and assessed
automatically using the formal specification, speeding time-to-market for new de-
velopments. Furthermore, the coverage of the generated tests may be measured
against the specification using rigorous techniques. There exist actual tools that
support test automation based on B specifications [16, 17] and there is at least
one tool developer investigating the possibility of using our formal model to
automate tests for GlobalPlatform compliance.

170 S. Zanella Béguelin

Formal Development. The B method supports fully formal software develop-
ment. An interesting line of work is to investigate if the model could be, at least
partially, refined down to executable code. Another possibility is to refine the
existing model to specialise it for particular card configurations: proving the re-
finement correctness amounts to justifying compatibility with the specifications.
The layered structure of the specification makes the model easy to extend.

Reference Implementation. Instead of refining the formal model to exe-
cutable code, an alternative approach is to reuse the model to derive a reference
implementation annotated in a specification language like JML, together with a
justification that the implementation satisfies the specification. Such annotated
implementation may be subject to model checking and static verification.

Specification Maintenance. The smart card field is highly dynamic, specifi-
cations must evolve to satisfy the market requirements and this formal model is
not an exception. Future versions of GlobalPlatform specifications are already
scheduled for 2006. Rather than becoming a load, both specifications may benefit
from evolving simultaneously, envisaging the possibility of a future convergence.

7.2 Related Work

Formal methods had been applied to the verification of real-world smart card
applications. Significant research effort has been put into the formalisation of
specific smart card platform implementations. However, most of the work has
been concerned with the Java Card platform (e.g. virtual machine, bytecode
verifier and API). We detail some of the main achievements below.

Application Verification. Stepney et al. [18] give a specification and formal
proofs of some security properties of an industrial strength electronic purse ap-
plication using Z. Huisman and Cataño [19] use ESC/Java to annotate with
functional specifications and statically verify the code of an electronic purse
Java Card applet. The KeY tool [20] is an interactive theorem prover based on
Dynamic Logic for Java Card source code annotated in OCL. Krakatoa [21] and
Jack [22] are tools for the verification of JML-annotated Java Card programs,
using the Coq proof assistant. Jack may also generate proof obligations for other
theorem provers like PVS and Simplify.

Java Card Virtual Machine (JCVM). The VerifiCard [23] project succeeded
in giving complete formalisations of the Java Card platform implementation at
both bytecode and source code level. A partial formalisation of the JCVM us-
ing the B formal method is given in [9]. The Bali project [24] formalises in
Isabelle/HOL a large body of the Java platform, including operational seman-
tics for the source and bytecode languages and an abstract ByteCode Verifier
(BCV); [25] provides executable Coq specifications for the JCVM as well as a
BCV. [26] is a volume dedicated to the formal syntax and semantics of Java.
All these works provide means to reason formally about applications written
in the Java Card programming language and enable the verification of applet
correctness.

Formalisation and Verification of the GlobalPlatform Card Specification 171

Java Card API. Interface specifications for the Java Card API have been
written in the JML and ESC/Java specification languages and are presented in
[27, 28, 29]. [30] is a recent overview of JML tools and applications. The LOOP
(Logic of Object-Oriented Programming) tool was used to verify that the ac-
tual Java Card API classes deployed in smart cards satisfy the JML interface
specifications [31].

Protocols. Sabatier and Lartigue present their result on the validation of the
transaction mechanism for smart cards using the B method in [11]. A semi-formal
and a formal B specification of the T=1 protocol used to transfer messages be-
tween a smart card and a reader is presented in [12]. This approach complements
our work, since we only deal with on-card features.

Acknowledgements

I would like to thank Gilles Barthe for his helpful comments on preliminary
versions of this paper. Jean-Louis Lanet and Lilian Burdy kindly provided their
expertise in the B method and valuable insights while the specification was being
developed. Marc Kekicheff from GlobalPlatform promptly provided clarifications
on the semi-formal specifications when needed.

References

1. Rankl, W., Effing, W.: Smart Card Handbook, second edition. John Wiley & Sons,
Inc. (2000)

2. GlobalPlatform: Card Specification. Version 2.1.1. (2003)
3. GlobalPlatform. http://www.globalplatform.org.
4. Abrial, J.R.: The B Book - Assigning Programs to Meanings. Cambridge University

Press (1996)
5. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Upper Saddle River,

NJ, USA (1976)
6. Site B Grenoble. http://www-lsr.imag.fr/B/b-tools.html.
7. Behm, P., Benoit, P., Faivre, A., Meynadier, J.M.: METEOR: A successful ap-

plication of B in a large project. In: Proceedings of FM’99: World Congress on
Formal Methods. (1999) 369–387

8. Hoare, J., Dick, J., Neilson, D., Sorensen, I.: Applying the B technologies to CICS.
In: Proceedings of FME ’96: Industrial Benefit and Advances in Formal Methods.
Third International Symposium of Formal Methods Europe. (1996) 74–84

9. Lanet, J.L., Requet, A.: Formal proof of smart card applets correctness. In
Quisquater, J.J., Schneier, B., eds.: Third Smart Card Research and Advanced
Application Conference, Louvain-la-Neuve, Belgium (1998)

10. Bert, D., Boulm, S., Potet, M.L., Requet, A., Voisin, L.: Adaptable translator of B
specifications to embedded C programs. In Araki, I.K., Gnesi, S., Eds., D.M., eds.:
FME 2003. Volume 2805 of Lecture Notes in Computer Science (Springer-Verlag).,
Formal Methods Europe, Springer-Verlag (2003) 94–113

11. Sabatier, D., Lartigue, P.: The use of the B formal method for the design and the
validation of the transaction mechanism for smart card applications. In: Proceed-
ings of FM’99: World Congress on Formal Methods. (1999) 348–368

172 S. Zanella Béguelin

12. Lanet, J.L., Lartigue, P.: The use of formal methods for smartcards, a comparison
between B and SDL to model the T=1 protocol. In: Proceedings of International
Workshop on Comparing Systems Specification Techniques, Nantes (1998)

13. Casset, L., Burdy, L., Requet, A.: Formal development of an embedded verifier for
Java Card byte code. In: DSN ’02: Proceedings of the 2002 International Conference
on Dependable Systems and Networks, Washington, DC, USA, IEEE Computer
Society (2002) 51–58

14. Lano, K.: The B Language and Method: A guide to Practical Formal Development.
Springer Verlag London Ltd. (1996)

15. GlobalPlatform: Card Security Requirements Specification. Version 1.0. (2001)
16. Manoranjan, M., Satpathy, M., Butler, M.: ProTest: An automatic test environ-

ment for B specifications. In: Proceedings of International workshop on Model
Based Testing, ECS University of Southhampton (2004)

17. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F.,
Vacelet, N., Utting, M.: BZ-TT: A tool-set for test generation from Z and B
using constraint logic programming. In: Proc. of Formal Approaches to Testing of
Software, FATES 2002. (2002) 105–120

18. Stepney, S., Cooper, D., Woodcock, J.: An electronic purse: Specification, refine-
ment and proof. Technical Monograph PRG-126, Oxford University Computing
Laboratory, Wolfson Building, Parks Road, Oxford, UK (2000)

19. Cataño, N., Huisman, M.: Formal specification and static checking of Gemplus’
electronic purse using ESC/Java. In: FME ’02: Proceedings of the International
Symposium of Formal Methods Europe on Formal Methods - Getting IT Right,
London, UK, Springer-Verlag (2002) 272–289

20. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Software and
System Modeling 4 (2005) 32–54

21. Marché, C., Paulin-Mohring, C., Urbain, X.: The Krakatoa tool for certification of
Java/JavaCard programs annotated in JML. J. Log. Algebr. Program. 58 (2004)
89–106

22. Burdy, L., Requet, A., Lanet, J.L.: Java applet correctness: A developer-oriented
approach. In Araki, K., Gnesi, S., Mandrioli, D., eds.: FME 2003: Formal Meth-
ods: International Symposium of Formal Methods Europe. Volume 2805 of LNCS,
Springer-Verlag (2003) 422–439

23. VerifiCard project. http://www.cs.ru.nl/VerifiCard.
24. Bali project. http://isabelle.in.tum.de/bali .
25. Barthe, G., Dufay, G., Jakubiec, L., Serpette, B.P., de Sousa, S.M.: A formal

executable semantics of the JavaCard platform. In: ESOP ’01: Proceedings of the
10th European Symposium on Programming Languages and Systems, Springer-
Verlag (2001) 302–319

26. Alves-Foss, J., ed.: Formal syntax and semantics of Java. Volume 1523 of LNCS.
Springer-Verlag (1999)

27. Poll, E., van den Berg, J., Jacobs, B.: Specification of the JavaCard API in JML.
In Domingo-Ferrer, J., Chan, D., Watson, A., eds.: Fourth Smart Card Research
and Advanced Application Conference (CARDIS’2000), Kluwer Acad. Publ. (2000)
135–154

28. Poll, E., van den Berg, J., Jacobs, B.: Formal specification of the JavaCard API
in JML: the APDU class. Computer Networks 36 (2001) 407–421

Formalisation and Verification of the GlobalPlatform Card Specification 173

29. Meijer, H., Poll, E.: Towards a full formal specification of the Java Card API.
Volume 2140 of LNCS, Springer-Verlag (2001) 165+

30. Burdy, L., Cheon, Y., Cok, D., Ernst, M.D., Kiniry, J., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. STTT 7 (2005)
212–232

31. Poll, E., van den Berg, J., Jacobs, B.: Formal specification and verification of
JavaCard’s application identifier class. In Attali, I., Jensen, T., eds.: Proceedings
of the Java Card 2000 Workshop. Volume 2041 of LNCS, Springer-Verlag (2001)
137–150

Author Index

Ardagna, Claudio A. 1
Aspinall, David 16

Bonelli, Eduardo 37

Compagnoni, Adriana 37
Courbot, Alexandre 57
Cremonini, Marco 1

Damiani, Ernesto 1
De Capitani di Vimercati, Sabrina 1

Grimaud, Gilles 57

Jean, Sébastien 118

League, Christopher 77
Lohmann, Daniel 99

MacKenzie, Kenneth 16
Medel, Ricardo 37
Monnier, Stefan 77

Özcan, Ali Erdem 118

Pichardie, David 138

Samarati, Pierangela 1
Schröder-Preikschat, Wolfgang 99
Spinczyk, Olaf 99
Stefani, Jean-Bernard 118

Vandewalle, Jean-Jacques 57

Zanella Béguelin, Santiago 155

	Frontmatter
	The Architecture of a Privacy-Aware Access Control Decision Component
	Mobile Resource Guarantees and Policies
	Information Flow Analysis for a Typed Assembly Language with Polymorphic Stacks
	Romization: Early Deployment and Customization of Java Systems for Constrained Devices
	Typed Compilation Against Non-manifest Base Classes
	The Design of Application-Tailorable Operating System Product Lines
	Bringing Ease and Adaptability to MPSoC Software Design: A Component-Based Approach
	Modular Proof Principles for Parameterised Concretizations
	Formalisation and Verification of the GlobalPlatform Card Specification Using the B Method
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

